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Abstract

Across the world, languages enable their speakers to communicate effectively using relatively
small lexicons compared to the complexity of the environment. How do word meanings fa-
cilitate this ability across languages? The forces that govern how languages assign meanings
to words, i.e., human semantic systems, have been debated for decades. Recently, it has been
suggested that languages are adapted for efficient communication. However, a major question
has been left largely unaddressed: how does pressure for efficiency relate to the evolution of
semantic systems? This thesis addresses this question by identifying fundamental information-
theoretic principles that may underlie semantic systems and their evolution. The main results
and contributions of this thesis are structured in three parts, as detailed below.

Part I presents our information-theoretic approach to semantic systems and demonstrates its
predictive power and empirical advantages. We argue that languages efficiently encode mean-
ings into words by optimizing the Information Bottleneck (IB) tradeoff between the complexity
and accuracy of the lexicon. We begin by testing this hypothesis in the domain of color nam-
ing, and show that color naming across languages is near-optimally efficient in the IB sense.
Furthermore, this finding suggests (1) a theoretical explanation for why empirically observed
patterns of inconsistent naming and stochastic categories, which introduce ambiguity, are effi-
cient for communication; and (2) that languages may evolve under pressure for efficient coding
through an annealing-like process that synthesizes continuous and discrete aspects of previous
accounts of color category evolution. This process generates quantitative predictions for how
color naming systems may change over time. These predictions are directly supported by an
analysis of recent data documenting changes over time in the color naming system of a single
language. In addition, we show that this general approach also applies to two qualitatively
different semantic domains: names for household containers, and for animal categories. Taken
together, these findings suggest that pressure for efficient coding under limited resources, as
defined by IB, may shape semantic systems across languages and across domains.

Part II presents an information-theoretic approach for characterizing communicative need.
Communicative need is a central component in many efficiency-based approaches to language,
including the IB approach mentioned above. It is formulated as a prior distribution over el-
ements in the environment that reflects the frequency in which they are referred to during
communication. There is evidence that this component may have substantial influence on se-
mantic systems, however it has not been clear how to characterize and estimate it. We address
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this problem by invoking two general information-theoretic principles: the capacity-achieving
principle, and the maximum-entropy principle. As before, we test this approach in the do-
main of color naming. First, an analysis based on the capacity-achieving principle suggests
that color naming may be shaped by communicative need in interaction with color percep-
tion, as opposed to traditional accounts that focused mainly on perception and recent accounts
that focused mainly on need. Second, by invoking the maximum-entropy principle with word-
frequency constraints, we show that linguistic usage may be the most relevant factor for char-
acterizing the communicative need of colors, as opposed to the statistics of colors in the visual
environment. This approach is domain-general, and so it may also be used to characterize
communicative need in other semantic domains.

Part III touches on the foundations of the IB framework by extending the mathematical
understanding of the structure and evolution of efficient IB representations. This contribution
is important given the growing evidence for the applicability of the IB principle not only to
language, but also to deep learning, neuroscience, and cognition. Here, we consider specifically
the case of discrete, or symbolic, representations, as in our application of IB to the evolution of
human semantic systems. We characterize the structural changes in the IB representations as
they evolve via a deterministic annealing process; derive an algorithm for finding critical points;
and numerically explore the types of bifurcations and related phenomena that occur in IB.
These phenomena and the theoretical justification for this approach apply to efficient symbolic
representations in both humans and machines. Therefore, we believe that this approach could
potentially guide the development of artificial intelligence systems with human-like semantics.

In conclusion, this thesis presents a mathematical approach to semantic systems that is
comprehensively grounded in information theory and is supported empirically. Pressure for
efficient coding arises as a major force that may shape semantic systems across languages, sug-
gesting that the same principles that govern low-level neural representations may also govern
high-level semantic representations.
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Chapter 1

Introduction

This thesis aims to identify general computational principles that underlie the structure and evo-
lution of semantic systems. To this end, we seek independently motivated optimization prin-
ciples that generate quantitative predictions, and then test these predictions on cross-linguistic
data. Our theoretical motivation is grounded in information theory, which was initially intro-
duced by Shannon in 1948 as “A Mathematical Theory of Communication” (Shannon, 1948)
and renamed in the following year to “The Mathematical Theory of Communication” (Shannon
and Weaver, 1949). This seemingly minor change reflects the appreciation of Shannon’s ax-
iomatic and platform-independent approach, which situates it as the theory of communication.

However, since the early days of information theory, the immediate appeal of invoking it as
a theory of human language — the most remarkable communication system — has been widely
contested (Miller, 2003; Luce, 2003; Bentz, 2018). Particularly noteworthy in our context is the
claim that information theory only pertains to the engineering aspects of communication, and
not to the semantic aspects of communication (Shannon and Weaver, 1949). This picture has
started to change over the years (e.g., Pereira et al., 1993; Pereira, 2000; Plotkin and Nowak,
2000; Ferrer i Cancho and Solé, 2003), and more recently there has been a surge of evidence
that information-theoretic approaches may explain a wide range of linguistic phenomena (for
review: Gibson et al., 2019). In particular, it has been argued that semantic systems are adapted
for efficient communication (Kemp et al., 2018), and this notion of efficiency has been formu-
lated partially in information-theoretic terms. However, a major question has been left largely
unaddressed: how does pressure for efficiency relate to the evolution of semantic systems?

In this thesis, we address this question by presenting a mathematical approach to semantic
systems which is comprehensively grounded in information theory and is supported empiri-
cally. Central to this approach is the Information Bottleneck principle (Tishby et al., 1999)
that arises as the link between semantics and the branch of information theory called Rate–
Distortion theory (Shannon, 1948, 1959), which addresses the problem of data compression.
Our theoretical account is novel, to our knowledge, and shows that fundamental information-
theoretic principles may explain the different ways human languages encode meanings into
words. This account has several important implications for the evolution of human semantic

1



systems, as well as potential applications for the development of human-like semantic systems
in machines. Preparatory to discussing these results, we first review the information-theoretic
principles on which this thesis builds. We then review previous studies that applied related ideas
to semantic systems, as well as other relevant applications of information theory to language.
We conclude this chapter with an outline and overview of the main contribution of this thesis.

1.1 Information theory

We begin with an overview of the main results in information theory that are particularly rele-
vant for this thesis. Many details are left out, including proofs. For a comprehensive discussion
of this topic see Cover and Thomas (2006). In this section, and generally throughout this the-
sis, we use upper-case letters to denote random variables (e.g.,X), calligraphic letters to denote
their support (e.g., X ), and lower-case letters to denote a specific realization (e.g., x). For sim-
plicity, all random variables are assumed to be discrete, unless stated otherwise. In addition, we
use the notation p(x) to denote either the probability mass distribution of X , or the probability
of a realization x ∈X according to this distribution. This abuse of notation is standard, and can
be disambiguated from context. For brevity, we occasionally denote distributions by lower-case
letters (e.g., p) when the intention is clear.

1.1.1 Informational measures

The formal notion of information follows from several basic measures. These measures are
model-independent in the sense that they depend only on the probability distribution of some
random variables without making any assumptions about the shape of these distributions. The
first informational measure we define is entropy, which measures the uncertainty induced by a
given distribution.

Definition 1. The entropy of a random variable X ∼ p(x) is defined as

H(X) =−
∑

x∈X
p(x) logp(x) .

Shannon derived this definition axiomatically by defining three intuitive properties that any
measure of uncertainty should satisfy (continuity, additivity, and monotonicity), and proving
that entropy is the only1 function that satisfies these properties. Intuitively, entropy reflects
the minimum description length of X , because it is (roughly) the minimal number of bits or
binary questions (e.g., “is X ∈ A?”) that are needed in order to determine the exact value of
X . Entropy is maximal when p(x) is uniform, in which case H(X) = log |X |. It is minimal

1This holds up to the choice of the base of the logarithm that determines the units. Here we assume that the
log is in base 2, namely the units are bits.
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when p(x) is deterministic, i.e. when there is only one possible value with p(x) = 1, in which
case there is no uncertainty and H(X) = 0.

The derivation of entropy as a measure of uncertainty forms the basis of the maximum en-

tropy principle (MaxEnt: Jaynes, 1982). MaxEnt states that if p(x) is unknown, then the most
justified estimator p̃(x) is the one that requires minimal assumptions, or equivalently, leaves
maximal uncertainty about X . In other words, p̃(x) is the distribution that maximizes H(X).
One particularly interesting property of entropy in this context, is that it is a concave func-
tional of p(x), which implies that the MaxEnt distribution is unique. In Chapter 6 we invoke
this principle by introducing a MaxEnt-type of principle for characterizing and estimating the
communicative need of elements in the environment.

The next informational measure we define is the Kullback-Leibler (KL) divergence, also
known as relative entropy, which is a measure of the divergence between two distributions.

Definition 2. The KL divergence between two distributions p(x) and q(x) is defined as

D[p ‖ q] =
∑

x∈X
p(x) log p(x)

q(x) .

Note that this definition is based on the convention that 0log 0
0 = 0.

It is possible to show that D[p ‖ q]≥ 0, and that equality holds if and only if p= q. The KL
divergence is not a metric because it is not symmetric and does not obey the triangle inequality.
However, it is still useful to think about it as the natural “distance” between distributions for
several reasons. First, notice that D[p ‖ q] is the expected log–likelihood ratio between p(x)
and q(x), and thus it controls the discriminability between these two distributions, when p is the
true underlying distribution of X . Second, the KL divergence reflects the difference between
the minimal description length of X ∼ p(x) and the description length if q(x) is mistakenly
used instead of p(x). To see this, notice that D[p ‖ q] = ∑

x p(x) log 1
q(x) −H(X), and recall

that H(X) is the minimal description length. Third, Pinsker’s inequality implies that the KL
divergences upper bounds the L1 distance between p and q. Therefore, it also bounds the L2

distance, and in general any Lρ distance for ρ≥ 1. Fourth, it was shown that the KL divergence
is unique in the sense that it is the only divergence measure for probabilities that satisfies several
desired properties (Harremoës and Tishby, 2007).

The last informational measure we introduce here is mutual information, which is the key
measure for characterizing the theoretical limits of communication.

Definition 3. Let (X,Y ) ∼ p(x,y), and let p(x) and p(y) be their marginal distributions re-

spectively. The mutual information between X and Y is defined as

I(X;Y ) =
∑

x∈X ,y∈Y
p(x,y) log p(x,y)

p(x)p(y) .

Notice that mutual information is closely related to the other informational measures we
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previous defined. One way of thinking about mutual information is in terms of the KL diver-
gence between p(x,y), and the hypothetical joint distribution had X and Y been independent
of each other, i.e. q(x,y) = p(x)p(y). To see this, notice that I(X;Y ) =D[p(x,y) ‖ p(x)p(y)]
by definition. It thus follows that I(X;Y ) ≥ 0 and I(X;Y ) = 0 if and only if X and Y are
independent. In addition, it is possible to show that I(X;Y ) = H(X)−H(Y |X), and from
symmetry it also holds that I(X;Y ) = H(Y )−H(X|Y ). Therefore, another interpretation
is that the mutual information captures the reduction of uncertainty about one variable as a
result of knowing the other variable. In addition, since H(X|Y ),H(Y |X) ≥ 0, it holds that
I(X;Y ) ≤ min{H(X),H(Y )}. If H(X|Y ) = 0, i.e. X is completely known given Y , then
I(X;Y ) =H(X). As a special case, it holds that I(X;X) =H(X). In this sense, mutual infor-
mation is more general than entropy, and entropy is sometimes referred to as self-information.

The fundamental theorems in information theory involve the maximization or minimization
of mutual information. In particular, this thesis invokes several optimization principles of this
type. The following theorem implies that maximizing I(X;Y ) with respect to p(x) is a con-
cave optimization problem, and minimizing it with respect to p(y|x) is a convex optimization
problem.

Theorem 1 (Cover and Thomas (2006), Theorem 2.7.4). Let (X,Y ) ∼ p(x,y) = p(x)p(y|x).
The mutual information I(X;Y ) is a concave function of p(x) for fixed p(y|x) and a convex

function of p(y|x) for fixed p(x).

Another important property of mutual information is the Data Processing Inequality (DPI),
which implies that the information Y contains about X cannot increase by processing Y . Be-
fore stating this formally, we need to define what it means to process Y . We say that (X,Y,Z)
form a Markov chain if their joint distribution can be decomposed as p(x,y,z) = p(x,y)p(z|y).
That is, Z is a function of Y and given Y it is independent of X . Therefore, we consider Z to
be a processed version of Y .

Theorem 2 (DPI). If (X,Y,Z) form a Markov chain, then I(X;Y )≥ I(Z;X).

It is easy to show that p(x,y)p(z|y) = p(y,z)p(x|y), and therefore if (X,Y,Z) form a
Markov chain so do (Z,Y,X). We denote these Markov chains by X −Y −Z. Notice that
this implies that if X−Y −Z, then I(X;Y )≥ I(Z;X) and I(Y ;Z)≥ I(Z;X).

1.1.2 The fundamental problem of communication

The fundamental problem of communication is how to transmit information from a sender to
a receiver over an imperfect communication channel, while ensuring sufficiently small error
and minimal channel uses. Shannon’s formulation of this problem is based on an abstract
communication model (Figure 1) which in its simplest form is composed of the following
components: (1) An information source that generates a message M ∼ p(m). (2) A sender
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sender

encoder

W
noisy channel

p(ŵ|w) Ŵ

decoder

M̂

receiver

Figure 1. Shannon’s basic communication model (Shannon, 1948).

that takes a message and encodes it into a transmittable form. (3) A communication channel2

that is defined by an input alphabet W , an output alphabet Ŵ , and the transition probability
distribution p(ŵ|w). Note that this abstraction captures the noise characteristics of the channel
regardless of its physical medium. (4) A receiver that decodes the output of the channel by
reconstructing from it the transmitted messages. Since the channel is noisy and limited it may
inject errors, and so this reconstruction may be inaccurate.

For any given source distribution p(m) and channel p(ŵ|w), the objective is to find a code,
i.e. an encoder and decoder pair, that attains sufficiently small reconstruction error while min-
imizing the number of channel symbols that needs to be transmitted. One of Shannon’s key
insights was that this problem can be broken into two parts: source coding, or data compres-
sion, that removes redundancies so that only the minimal representation of the source would
need to be transmitted; and channel coding, that adds redundancy in a constrained manner in
order to correct errors due to the channel’s noise. The source coding problem also applies to
cases in which some distortion is permitted between the sent and received message. For ex-
ample, cellular phones reduce the amount of transmitted data by compressing speech signals
with some degree of distortion that is insignificant for understanding what is being said. This
type of compression is called lossy compression, and is characterized by Rate–Distortion (RD)
theory (Shannon, 1959).

Shannon’s coding theorems characterize the theoretical limits of communication, which
are attained when messages are encoded in large sequences rather than individually (block
coding). The key result is that despite the channel’s noise, it is possible to communicate with
arbitrarily small error if H(M) does not exceed3 some quantity C called the channel capac-
ity, which we will define later. In the case of lossy compression, H(M) is replaced with
I(M ;M̂) =H(M)−H(M |M̂). Shannon’s separation theorem (see Cover and Thomas, 2006,
section 7.13) implies that combining the source coding solution under an assumption of a noise-
less channel, with the channel coding solution under the assumption of a uniform source, can
be done (asymptotically) without loss in performance compared to joint source-channel coding.

The following two sections elaborate on channel capacity and RD, as they both play an
important role in this thesis. The principle of achieving the channel capacity is central to our

2Strictly speaking, we refer here to a discrete memoryless channel.
3Following Cover and Thomas (2006), we assume that a sequence of n source messages is mapped to a

sequence of k = n channel symbols. In the more general case, the requirement is H(M)≤ kC/n.
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characterization of the notion of communicative need, as discussed in Part II of this thesis.
In Parts I and III we invoke the Information Bottleneck (IB) principle (Tishby et al., 1999),
which can be cast in terms of RD (see Section 1.2), in order to characterize human semantic
systems and symbolic representations more generally. However, we invoke the two principles
separately, that is, in each case we consider a different instance of the general communication
model. While these two communication models are coupled in some sense, the channel we
consider for characterizing communicative need is different than the implicit noiseless channel
in the IB source coding problem. Therefore, in our following discussion on channel capacity
we use X and Y to denote the input and output of the channel, and leave the notation we used
thus far for our discussion on RD and IB.

1.1.3 Channel capacity

The capacity of a channel is the maximal bits per symbol (on average) that can be transmitted
over the channel. In other words, the maximum number of distinct messages that can be trans-
mitted accurately with n channel uses is roughly 2nC , where C is the channel capacity. Perhaps
the most celebrated result in information theory is the characterization of the channel capacity
in terms of the mutual information between the input and output of the channel.

Definition 4. The capacity of a channel p(y|x) is defined as

C = max
p(x)

I(X;Y ) ,

where the maximum is taken over all prior distributions p(x) for the channel’s input.

Recall that maximizing I(X;Y ) with respect to p(x) for fixed p(y|x) is a concave optimization
problem (Theorem 1). Strictly speaking, the above definition refers to the “information channel
capacity.” Shannon’s channel coding theorem shows that the information channel capacity is
equal to the operational definition mentioned above, i.e. the maximal achievable rate of bits per
channel use. The channel capacity is an important characteristic of the channel, independent of
the specific channel codes that are used in practice. Here we focus on this characterization of
the channel, and in particular on the prior that achieves the capacity. We refer to this prior as
the capacity-achieving prior (CAP).

In general, there is no closed form solution for the channel capacity and the CAP. However,
in the cases considered in this thesis, they can be evaluated numerically via the Blahut–Arimoto
(BA) algorithm (Blahut, 1972; Arimoto, 1972). The main idea behind this algorithm is to
introduce an auxiliary variable p(x|y) and to differentiate I(X;Y ) =∑

x,y p(x)p(y|x) log p(x|y)
p(x)
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with respect to p(x) and p(x|y). This gives the following coupled equations:





p(x) = 1
Z

exp

−

∑

y
p(y|x) logp(x|y)




p(x|y) = p(x)p(y|x)
∑
x′(y|x′)p(x′)

, (1.1)

where Z is a normalization factor. Since the problem is concave, satisfying these equations
self-consistently is a necessary and sufficient condition for optimality. The BA algorithm finds
the optimal solution by iteratively updating these two equations until convergence.4

In this thesis we invoke the capacity-achieving principle with respect to a naming channel,
that is, a channel that takes as input an object in the environment and outputs a word that is as-
sociated with it. This is a semantic channel implemented by speakers of a language, rather than
a low-level physical channel. The CAP in this case induces a prior distribution over objects in
the environment. This prior distribution is a property of the given channel, and so it may reveal
communicative aspects that are implicit in the naming systems of different languages. Another
motivation for considering capacity achieving priors in our context is the relation of such priors
to MaxEnt priors and to the notion of least informative priors in Bayesian inference (Bernardo,
2005). These connections are laid out in chapter 2 (Supporting Information, Section 2).

1.1.4 Rate–Distortion theory

The dual problem to transmitting information over a noisy channel is data compression. Shan-
non’s Rate–Distortion (RD) theory addresses this problem and characterizes the optimal source
coding schemes in the case of lossy compression, i.e. when some distortion between the sent
and received messages, d(m,m̂), may be tolerated. Lossless compression is obtained as a spe-
cial case when no distortion is allowed. However, in many cases the source contains more
information than what is needed for successful communication, as in the speech example men-
tioned earlier. In other cases, even a noticeable amount of error may be beneficial, if the cost
of such errors is lower than the cost or effort involved in transmitting all the data. Here we are
interested in such cases.

Loosely speaking, the RD problem is to find the minimal number of bits that are required
for representing M , while not exceeding an allowed level of distortion; or equivalently, to find
the minimal expected distortion that can be achieved with a given budget of bits that are used
for the representation.

To formulate this more precisely, consider an encoder f that takes a sequence of nmessages
and represents it using nR bits; i.e., f :Mn→ {1, . . . ,2nR}. Assume that this representation
is transmitted over a noiseless channel, and is then decoded by the receiver using a decoder

4It can be shown that each iteration increases the mutual information, and we have already seen that this
function is bounded. Therefore, asymptotical convergence is guaranteed.
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g : {1, . . . ,2nR} → M̂n. R is called the rate of the code, and it is the number of bits per
message. Low values of R imply high compression rates, however this may result in high
expected distortion, defined by

Df,g =
∑

mn∈Mn

p(mn) 1
n

n∑

i=1
d(mi,g(f(mn))i) . (1.2)

We can simplify this expression by rewriting it as

Df,g =
∑

m,m̂

p(m)Pf,g(m̂|m)d(m,m̂) , (1.3)

where Pf,g(m̂|m) is the conditional probability distribution induced by the code. To see this,
first note that the probability that the i-th reconstructed messages is m̂ given that the i-th sent
message was m is obtained by summing over all possible sequences as follows

p
(
g(f(Mn))i = m̂|Mi =m

)
=
∑
mn∈Ci

m,m̂
p(mn)

∑
mn∈Ci

m
p(mn) . (1.4)

where Cim = {mn ∈Mn : mi = m} and Cim,m̂ = {mn ∈ Cim : g(f(mn))i = m̂}. Taking the
expectation over i with respect to p(i) = 1

n gives

Pf,g(m̂|m) =
∑

i

p(i)p
(
g(f(Mn))i = m̂|Mi =m

)
. (1.5)

We refer to this distribution as the probabilistic signature of the code.
RD theory characterizes the achievable5 region of (R,D) pairs, as well as the probabilistic

signature of optimal codes at the limit of large n. The rate–distortion function R(D) is defined
by the infimum over all rates that are achievable with distortion at most D. Remarkably, Shan-
non showed that R(D) is equal to the information rate–distortion function which is defined by
the following constrained optimization problem:6

R(I)(D) = min
p(m̂|m)

I(M ;M̂) (1.6)

such that
∑

m
p(m)p(m̂|m)d(m,m̂)≤D

We therefore consider R(I)(D) as the rate, or representational complexity, because it roughly
corresponds to the expected number of bit that are needed to encodeM using the representation
M̂ . Note that rates below R(I)(D) are unachievable with distortion at most D.

Shannon’s formulation and proofs are based on coding in large blocks, however from a

5The term “achievable” is used here loosely, and we rely on its intuitive interpretation. See Cover and Thomas
(2006) for a formal definition of achievability.

6For proof and more details see Cover and Thomas (2006), Theorem 10.2.1.
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cognitive perspective this assumption is unlikely (Luce, 2003). In some cases it is possible to
reach the theoretical limit with finite blocks or even with single-message coding (Gastpar et al.,
2003), but it is also possible that the “cognitively achievable” region is smaller than the region
defined by the RD curve. While we do not know what the actual cognitively achievable region
is, we can still compare the probabilistic signature of the optimal codes with the probabilistic
signature of human-generated coding schemes (in our case, naming systems). If the two signa-
tures are similar, then this suggests that the human-generated coding schemes may lie near the
theoretical limit of communication that was derived by Shannon.

Shannon’s proofs are not constructive, and finding the optimal codes may be computation-
ally hard. However, finding the probabilistic signature of the optimal codes is tractable in our
case. Recall that the mutual information is convex in p(m̂|m) and note that the constraint on
the distortion is linear in p(m̂|m). Therefore equation equation (1.6) is a convex optimization
problem. Solving this constrained optimization problem amounts to minimizing the Lagrangian

L[p(m̂|m);β] = I(M ;M̂)+β E
m∼p(m)
m̂∼p(m̂|m)

[d(M,M̂)] (1.7)

where β is the Lagrange multiplier that corresponds to the constraint on the distortion. The
minimum of this Lagrangian can be found via the same BA algorithm we discussed in Sec-
tion 1.1.3, however in this case p(m̂|m), rather than p(m), has an exponential form:





p(m̂|m) = p(m̂)
Zβ(m) exp(−βd(m,m̂)

p(m̂) = ∑
m p(m)p(m̂|m)

, (1.8)

where Zβ(m) is a normalization factor.
While RD theory is a powerful framework, it does not provide a means to determine the

distortion measure and instead assumes that the distortion is specified by the designer of the
communication system. However, is it not always clear how to choose the right distortion mea-
sure. In the following section we discuss an influential framework that addresses this question,
and is the main framework on which this thesis builds.

1.2 The Information Bottleneck principle

The Information Bottleneck (IB) principle was introduced by Tishby et al. (1999) as a method
for finding a concise representation of an input variable which is maximally informative about
some target variable. IB can be cast in terms of RD theory, with a unique distortion measure
that arises naturally from the statistics of the input and target variables. In addition, it has been
broadly applied across multiple disciplines, including neuroscience (Buesing and Maass, 2010;
Palmer et al., 2015; Wang et al., 2017), signal processing (Hecht and Tishby, 2005), functional
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harmony (Jacoby et al., 2015), language (Slonim and Tishby, 2000), deep learning (Tishby and
Zaslavsky, 2015; Alemi et al., 2017; Shwartz-Ziv and Tishby, 2017), and machine learning
more generally (Chechik et al., 2005; Shamir et al., 2010).

In this thesis, we build on the IB framework in order to account for semantic systems and
their evolution. This application of IB is novel to our knowledge, and it is based on the RD, or
lossy compression, interpretation of IB. We first present the standard IB formulation, and then
show how this formulation corresponds to the communication model in Figure 1 and to the RD
problem discussed in Section 1.1.4.

Let X be an input random variable, Y a target variable, and p(x,y) their joint distribu-
tion. A representation T is a stochastic function of X defined by a mapping p(t|x). In other
words, Y −X−T form a Markov chain. Note that the Data Processing Inequality (DPI, see
Section 1.1.1) implies that I(X;Y )≥ I(T ;Y ) regardless of how p(t|x) is chosen. We refer to
I(T ;Y ) as the relevant information in T about Y , or the accuracy of the representation. If T
is a copy of X , then its accuracy is maximal. However, if T is a compressed version of X that
losses relevant bits about Y , then these bits cannot be restored and the inequality in the DPI is
strict. The representational complexity of T is roughly the expected number of bits that it keeps
about X . In IB, as in RD, this complexity term is measured by the informational rate I(X;T ).

According to the IB principle, optimal representations satisfy a tradeoff between compress-
ing X , i.e. minimizing the representational complexity, and maximizing the relevant informa-
tion about Y . Formally, the IB optimization problem is to minimize the following objective
function:

Fβ[p(t|x)] = I(X;T )−βI(T ;Y ) , (1.9)

where β is the tradeoff parameter. Equivalently, this can be formulated as a constrained opti-
mization problem, similar to equation (1.6), where β is the Lagrange multiplier that corresponds
to a constraint on the amount of required relevant information.

It can be shown (see e.g. Chapter 7, Lemma 1) that:

I(T ;Y ) = I(X;Y )− E
x∼p(x)
t∼p(t|x)

[D[p(y|x) ‖ p(y|t)]] . (1.10)

Therefore, the expected KL divergence between p(y|x) and p(y|t) defines the accuracy loss,
and minimizing Fβ is equivalent to minimizing

LIB[p(t|x)] = I(X;T )+β E
x∼p(x)
t∼p(t|x)

[D[p(y|x) ‖ p(y|t)]] . (1.11)

Notice that equation (1.11) has the same form as equation (1.7), where D[p(y|x) ‖ p(y|t)]
emerges as the distortion measure.

The RD problem that corresponds to the IB framework is obtained when the messages them-
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selves are defined by distributions (Harremoës and Tishby, 2007). In this case, the KL diver-
gence is indeed the natural distortion measure betweenM and M̂ (see Section 1.1.1 for detailed
justification). To see exactly this relation between RD and IB, letM be the set of probability
distributions m(y) over Y that is induced by p(y|x), i.e., M= {m(y) : ∃x,m(y) = p(y|x)}.
Let φ : X →M be the mapping from x to its corresponding message, i.e. φ(x) = p(y|x). Sim-
ilarly, we map each t to the corresponding reconstruction. Formally, let M̂ be the simplex of
probability distributions over Y and let µ : T → M̂ such that µ(t) = p(y|t). In other words, X
corresponds to the sent messages, and T corresponds to its reconstructed representation.

In Chapter 2 we apply this formulation to naming systems, that is, mappings from objects
in the environment to words. We assume that the speaker (sender) mentally represents each
object by a distribution M over some relevant features, and wishes to communicate this mental
representation to the listener (receiver). This is done by encoding the speaker’s mental repre-
sentation into a codeword W and transmitting the codeword to the listener. In this setting T
corresponds to W , and the listener’s interpretation of the word corresponds to M̂ . This set-
ting suggests a slightly different relation between IB and RD compared to the relation that was
shown by (Harremoës and Tishby, 2007), however we have shown (see Chapter 2, Supporting
Information) that the differences between these two formulations are not substantial. Based
on these theoretical foundations, we can derive the optimal naming systems, i.e., systems in
which W is an optimal IB representation of M , and compare these systems with actual naming
systems across languages.

Finding optimal IB representations can be done via the IB method, which is a variant of
the BA algorithm. Denote by pβ(t|x) an optimal IB representation, which is necessarily a
stationary point of equation (1.9) (or equivalently, of equation (1.11)) for a given value of β.
Tishby et al. (1999) have shown that a necessary condition for optimality is that pβ satisfies the
following self consistent equations:





pβ(t|x) = pβ(t)
Zβ(x) exp

(
−βD[p(y|x) ‖ pβ(y|t)]

)

pβ(t) =
∑

x∈X
p(x)pβ(t|x)

pβ(y|t) =
∑

x∈X
pβ(x|t)p(y|x) .

(1.12)

The IB method starts with some initial condition p0(t|x), and iteratively updates these equa-
tions until convergence. Notice that the first two equation are similar to the BA algorithm for
RD (1.8), however here we have a third update equation for pβ(y|t). In addition, the distor-
tion measure in this case, i.e. the KL divergence in the exponent of the first update equation,
depends on the solution through pβ(y|t). In other words, the distortion measure in IB is not
constant, as in RD, but rather depends on the properties of the problem (Gilad-Bachrach et al.,
2003). This powerful feature however comes at a price, namely that the IB optimization prob-
lem is non-convex. Therefore, only local convergence is guaranteed in the IB method. This

11



issue can be mitigated using a method called deterministic annealing (Rose et al., 1990; Rose,
1998, and see also Chapter 7 in this thesis).

Denote by Iβ(X;T ) and Iβ(T ;Y ) the complexity and accuracy of the optimal IB repre-
sentation defined by pβ . The IB theoretical limit is defined by these Pareto-optimal tradeoffs(
Iβ(X;T ), Iβ(T ;Y )

)
as a function of β. This theoretical limit is discussed in detail in Chap-

ters 2 and 7. In the following section we complement that by discussing a geometric interpre-
tation of IB that provides useful intuition for interpreting our main results in Parts I and III.

1.2.1 Geometric interpretation

One of the first applications of IB has been in the context of distributional clustering (Pereira
et al., 1993; Slonim and Tishby, 2001). IB can be seen as soft clustering of points in the
simplex of probability distributions over Y , denoted by4(Y). The KL divergence is the natural
“distance” measure in this clustering problem, for the reasons discussed in Section 1.1.1. To
see this clustering interpretation of IB, notice that the update equations of the IB method (1.12)
can be rewritten as follows:

p(t|x) ∝ p(t)exp(−βd(φ(x),µ(t)) (1.13)

p(t) =
∑

x
p(x)p(t|x) (1.14)

µ(t) =
∑

x
p(x|t)φ(x) , (1.15)

where d(φ(x),µ(t)) = D[φ(x) ‖ µ(t)]. These three equations correspond to soft clustering of
the points φ(x) in 4(Y). In this interpretation, x behaves as the index of the point φ(x) and

4(Y)T 4(T )X

4(T )

A. B.

y1 y2

y3

�(x) = p(y|x)

µ(t) = p(y|t)

Figure 2. Geometric interpretation of IB. A. Illustration of distributional clustering for |Y|= 3.
The gray triangle represent 4(Y). Each x is mapped to the point φ(x) ∈ 4(Y), and each t is
mapped to a point µ(t)∈4(Y). The IB method clusters the points φ(x), by iteratively updating
the cluster assignment probabilities p(t|x), the cluster weights p(t), and the cluster centroids
µ(t). B. Illustration of the IB method as alternating minimization. Each arrow corresponds to
a projection onto a set of distributions.
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t behaves as an index of a cluster. Equation (1.13) gives the cluster assignment probabilities,
equation (1.14) gives the cluster weights, and equation (1.15) gives the cluster centroids that lie
in4(Y). This geometric interpretation is illustrated in Figure 2A.

Another closely related geometric interpretation of the IB method is based on the fact that it
is an instance of the alternating minimization algorithmic scheme (Csiszár and Shields, 2004).
Given an initial clustering assignment, the optimal weights (1.14) are obtained by minimizing
Fβ with respect to p(t) for fixed p(t|x) and fixed centroids. This is a projection onto the simplex
of probability distributions over T , i.e. 4(T ). Given the clustering assignment and weights,
the optimal centroids (1.15) are obtained by minimizing Fβ only with respect to p(y|t) = µ(t),
which is a projection onto4(Y)T =4(Y)×·· ·×4(Y). Finally, the update of the clustering
assignment (1.13) is obtained by minimizing Fβ with respect to p(t|x) for fixed weights and
centroids. This alternating minimization process is illustrated in Figure 2B.

1.2.2 Relation to distributional semantics

A very influential idea in computational semantics is that the meaning of a word is determined
by the context in which it appears (Wittgenstein, 1953), or “by the company that it keeps” (Firth,
1957). This intuition was formalized by Harris (1954) in his distributional hypothesis, which
suggests that the semantic similarity between words is determined by their distributional sim-
ilarity, i.e. the similarity between the distributions they induce over their context. The idea of
distributional clustering of words with respect to a KL “distance” (Pereira et al., 1993) naturally
formalizes this notion of distributional semantics. Therefore, IB arises as the natural method for
distributional clustering of words. This approach has been successfully applied in the context
of natural language processing (e.g. Slonim and Tishby, 2000, 2001), and in particular, it has
been shown to reveal semantic hierarchies from corpus statistics (Pereira et al., 1993; Slonim,
2002). In this thesis we build on a similar idea, namely that meanings can be represented by
distributions and that semantic similarities can be measured in terms KL divergence. However,
a key difference between our approach and previous applications of IB in this context is that
here we will consider grounded meaning representations. That is, the meaning of a word is
determined by the distribution it induces over a set of perceptual or conceptual features which
are grounded in the environment, rather than by the distribution it induces over other words.

1.3 Semantic variation, language evolution, and information

Languages assign meanings to words in many different ways. For example, English has sep-
arate terms for “wood” and “tree,” whereas Hebrew has only one term for this pair. Such
cross-linguistic variation in word meanings appears widely across the lexicon, and has been
studied for several decades in semantic domains such as color (Berlin and Kay, 1969; Kay and
McDaniel, 1978), folk biology (Berlin, 1992; Brown, 1984), and kinship (Murdock, 1949).
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Intriguingly, this wide semantic variation appears to be constrained, and general tendencies in
word meanings have been identified across languages (von Finter and Matthewson, 2008). This
type of constrained semantic variation has often been held to reflect different linguistic stages
along a common evolutionary trajectory (Berlin and Kay, 1969; Brown, 1976, 1984).

One of the most renowned examples in this context is Berlin and Kay’s (1969) implicational
hierarchy for color naming. Berlin and Kay observed that languages vary widely in their color
terms, but at the same time, languages with similar number of color terms tend to divide up
the color spectrum in a similar way. That is, languages with two color terms would have terms
for black/dark and white/light; languages with three color terms tend to add a term for red;
languages with four terms tend to add a term for either green or yellow, and so on. Berlin and
Kay conjectured that color terms may evolve via this evolutionary sequence. This influential
proposal also inspired similar approaches in other semantic domains (e.g., Brown, 1976, 1984).

These observations suggest that there may be universal principles that underlie systems of
word meanings across languages, i.e., human semantic systems. Recently, it has been proposed
that such a principle may be the need to communicate efficiently (Kemp and Regier, 2012;
Regier et al., 2015). In this view, languages are pressured to optimize a tradeoff between cogni-
tive effort (or complexity) and communicative accuracy. This intuitive idea can be traced back
to Zipf’s least effort principle (Zipf, 1949), and to Rosch’s view of semantic categories (Rosch,
1999). The formulation of this idea by Regier et al. (2015) for semantic systems is partially
based on information-theoretic terms, and has gained empirical support in several semantic do-
mains, including kinship, color, and numeral systems (see Kemp et al., 2018, for review). This
approach is closely related to the IB framework, however a key difference is the specification
of the complexity measure. While Regier et al. (2015) define complexity in a domain-specific
manner, in the IB framework the complexity measure is domain-general and grounded in Rate–
Distortion theory (Shannon, 1948). This difference yields qualitatively different predictions,
especially regarding the probabilistic nature of semantic categories. In Chapter 2 (Supporting
Information, Section 4) we show the mathematical relation between these two frameworks in
the case of color naming, and discuss the differences in their predictions.

More broadly, related information-theoretic approaches have been applied to a wide range
of linguistic phenomena, such as the evolution of word forms (Plotkin and Nowak, 2000),
scaling and criticality (Ferrer i Cancho and Solé, 2003), sentence processing (Levy and Jaeger,
2007; Jaeger, 2010), lightness terms (Baddeley and Attewell, 2009), word lengths (Piantadosi
et al., 2011), word order (Gibson et al., 2013), symbol grounding (Corominas-Murtra et al.,
2014), and compositionality (Kirby et al., 2015). Taken together, this growing body of work
reflects the importance of information theory for studying language. However, most of these
approaches are based on the problem of data transmission over a noisy channel, rather than on
the problem of lossy data compression which is the basis for the approach laid out in this thesis.
Furthermore, the relation between a drive for efficient communication and the evolution of
semantic systems has been left largely unexplored. This thesis aims to advance toward closing
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this gap, while comprehensively grounding the notion of semantic efficiency in fundamental
information-theoretic principles.

1.3.1 The case of color naming

A large part of this thesis focuses on the special case of color naming. While our theoretical
framework is not specific to color and has been applied to other semantic domains (Chap-
ter 4), color provides a particularly useful and important test case for three main reasons. First,
this domain has been central to the study of linguistic diversity and its relation to language
evolution, as well as of the interaction between language and other cognitive functions. Sec-
ond, this is a unique case in which fine-grained naming data exists for over 100 languages
of non-industrialized societies (Kay et al., 2009), in addition to western languages such as
English (Lindsey and Brown, 2014). Third, several information-theoretic approaches has pre-
viously been proposed for this domain (Lindsey et al., 2015; Regier et al., 2015; Gibson et al.,
2017, and see also Zhaoping, 2007), as well as various computational models for the emergence
of color categories (e.g., Steels and Belpaeme, 2005; Dowman, 2007; Loreto et al., 2012). This
rich literature calls for a general theoretical account of color naming and its evolution.

1.4 Overview and main contributions

This thesis presents a mathematical approach to semantic systems and their evolution, which
is comprehensively grounded in information theory and is supported empirically. The main
results and contributions of this thesis are structured in three parts, as detailed below.

Part I: Efficient compression in the lexicon. The first and main contribution of this thesis
is a principled information-theoretic account of the structure and evolution of human semantic
systems. Chapter 2 presents this general approach and begins by testing it in the domain of
color naming. Specifically, we argue that languages efficiently encode meanings into words
by optimizing the Information Bottleneck (IB) tradeoff between the complexity and accuracy
of the lexicon. Using a rigorous quantitative evaluation, we show that color naming across
languages is near-optimally efficient, as predicted by the IB principle. Furthermore, this finding
suggests (1) a theoretical explanation for why empirically observed patterns of inconsistent
naming and stochastic categories, which introduce ambiguity, are efficient for communication;
and (2) that languages may evolve under pressure for efficient coding through an annealing-like
process that synthesizes continuous and discrete aspects of previous accounts of color category
evolution. This process generates quantitative predictions for how color naming systems may
change over time. In Chapter 3, we directly test these predictions in one language, Nafaanra, by
analyzing current color naming data for this language. We compare these data with similar data
for this language collected 40 years ago, documenting recent language change and showing
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that this change has occurred in a manner consistent with our predictions. In Chapter 4, we
show that our approach generalizes to two qualitatively different domains: names for household
containers, and for animal categories. Taken together, these findings suggest that pressure for
efficient coding under limited resources, as defined by IB, may shape semantic systems across
languages and across semantic domains.

Part II: Information-theoretic approach to communicative need. The second contribu-
tion of this thesis is an information-theoretic approach for characterizing communicative need.
Communicative need is a central component in many efficiency-based approaches to language,
including those reviewed in Section 1.3 and the IB approach presented in Part I. This component
is formulated as a prior distribution over elements in the environment that reflects the frequency
in which they are referred to during communication. There is evidence that this component may
have substantial influence on semantic systems, however it has not been clear how to charac-
terize and estimate it. We address this problem by invoking two general information-theoretic
principles: the capacity-achieving principle, and the maximum-entropy (MaxEnt) principle. As
before, we test this approach in the domain of color naming. In Chapter 5 we analyze com-
municative need through the lens of the capacity-achieving principle. This analysis suggests
that color naming may be shaped by communicative need in interaction with color perception,
as opposed to traditional accounts that focused mainly on perception and recent accounts that
focused mainly on need. In Chapter 6, we present a systematic evaluation of several factors
that may reflect the communicative need of colors in the environment: capacity constraints,
linguistic usage, and the statistics of colors in the visual environment. By invoking the MaxEnt
principle with word-frequency constraints, we show that linguistic usage may be the most rel-
evant factor for characterizing the communicative need of colors. This MaxEnt approach is
domain-general, and so it may also apply to communicative need in other semantic domains.

Part III: Evolution of compressed representations. The third contribution of this thesis
touches on the theoretical foundations of Part I, by extending the mathematical understanding
of the structure and evolution of optimal IB representations. This contribution is important also
in a broader context, given the growing evidence for the applicability of the IB principle not
only to language, but also to deep learning, neuroscience, and cognition. In Chapter 7, we study
the case of discrete, or symbolic, IB representations, which corresponds to our application of IB
to semantic systems. We characterize the structural changes in the IB representations as they
evolve via a deterministic annealing process; derive an algorithm for finding critical points;
and explore numerically the types of bifurcations and related phenomena that occur in IB.
These phenomena and the theoretical justification for this approach apply to efficient symbolic
representations in both humans and machines. Therefore, we believe that this approach could
potentially guide the development of artificial intelligence systems with human-like semantics.
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Part I

Efficient Compression in the Lexicon
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Chapter 2

Efficient Compression in Color Naming
and its Evolution

Noga Zaslavsky, Charles Kemp, Terry Regier, and Naftali Tishby (2018). Efficient compres-
sion in color naming and its evolution. Proceedings of the National Academy of Sciences,
115(31):7937– 7942. DOI: 10.1073/pnas.1800521115.
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We derive a principled information-theoretic account of cross-
language semantic variation. Specifically, we argue that lan-
guages efficiently compress ideas into words by optimizing the
information bottleneck (IB) trade-off between the complexity and
accuracy of the lexicon. We test this proposal in the domain
of color naming and show that (i) color-naming systems across
languages achieve near-optimal compression; (ii) small changes
in a single trade-off parameter account to a large extent for
observed cross-language variation; (iii) efficient IB color-naming
systems exhibit soft rather than hard category boundaries and
often leave large regions of color space inconsistently named,
both of which phenomena are found empirically; and (iv) these
IB systems evolve through a sequence of structural phase transi-
tions, in a single process that captures key ideas associated with
different accounts of color category evolution. These results sug-
gest that a drive for information-theoretic efficiency may shape
color-naming systems across languages. This principle is not spe-
cific to color, and so it may also apply to cross-language variation
in other semantic domains.

information theory | semantic typology | color naming | categories |
language evolution

Languages package ideas into words in different ways. For
example, English has separate terms for “hand” and “arm,”

“wood” and “tree,” and “air” and “wind,” but other languages
have single terms for each pair. At the same time, there are uni-
versal tendencies in word meanings, such that similar or identical
meanings often appear in unrelated languages. A major question
is how to account for such semantic universals and variation of
the lexicon in a principled and unified way.

One approach to this question proposes that word meanings
may reflect adaptation to pressure for efficient communication—
that is, communication that is precise yet requires only minimal
cognitive resources. On this view, cross-language variation in
semantic categories may reflect different solutions to this prob-
lem, while semantic commonalities across unrelated languages
may reflect independent routes to the same highly efficient
solution. This proposal, focused on linguistic meaning, echoes
the invocation of efficient communication to also explain other
aspects of language (e.g., refs. 1–4).

Color is a semantic domain that has been approached in
this spirit. Recent work has relied on the notion of the “infor-
mativeness” of word meaning, has often cast that notion in
terms borrowed from information theory, and has accounted for
several aspects of color naming across languages on that basis (5–
10). Of particular relevance to our present focus, Regier, Kemp,
and Kay (ref. 8, henceforth RKK) found that theoretically effi-
cient categorical partitions of color space broadly matched major
patterns of color naming seen across languages—suggesting that
pressure for efficiency may indeed help to explain why languages
categorize color as they do.

However, a fundamental issue has been left largely unad-
dressed: how a drive for efficiency may relate to accounts of
color category evolution. Berlin and Kay (11) proposed an evo-
lutionary sequence by which new terms refine existing partitions
of color space in a discrete order: first dark vs. light, then red,
then green and yellow, then blue, followed by other basic color

categories. RKK’s efficient theoretical color-naming systems cor-
respond roughly to the early stages of the Berlin and Kay
sequence, but they leave the transitions between stages unexam-
ined and are based on the false (9, 12, 13) simplifying assumption
that color-naming systems are hard partitions of color space.
In actuality, color categories are a canonical instance of soft
categories with graded membership, and it has been argued
(12, 13) that such categories may emerge gradually in parts
of color space that were previously inconsistently named. Such
soft category boundaries introduce uncertainty and therefore
might be expected to impede efficient communication (9). Thus,
it remains an open question whether a hypothesized drive for
efficiency can explain not just discrete stages of color category
evolution, but also how systems evolve continuously from one
stage to the next, and why inconsistent naming patterns are
sometimes observed.

Here, we argue that a drive for information-theoretic effi-
ciency provides a unified formal explanation of these phenom-
ena. Specifically, we argue that languages efficiently compress
ideas into words by optimizing the trade-off between the com-
plexity and accuracy of the lexicon according to the information
bottleneck (IB) principle (14), an independently motivated for-
mal principle with broad scope (15–17), which is closely related
(ref. 18 and SI Appendix, section 1.3) to rate distortion theory
(19). We support this claim by showing that cross-language vari-
ation in color naming can be explained in IB terms. Our findings
suggest that languages may evolve through a trajectory of effi-
cient solutions in a single process that synthesizes, in formal
terms, key ideas from Berlin and Kay’s (11) theory and from
more continuous accounts (12, 13) of color category evolution.
We also show that soft categories and inconsistent naming can
be information-theoretically efficient.

Significance

Semantic typology documents and explains how languages
vary in their structuring of meaning. Information theory
provides a formal model of communication that includes a
precise definition of efficient compression. We show that
color-naming systems across languages achieve near-optimal
compression and that this principle explains much of the vari-
ation across languages. These findings suggest a possible
process for color category evolution that synthesizes continu-
ous and discrete aspects of previous accounts. The generality
of this principle suggests that it may also apply to other
semantic domains.
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Our work focuses on data compression, in contrast with work
that views language in information-theoretic terms but focuses
instead on channel capacity (2–4, 7, 20), including work on lan-
guage evolution (21). Our work also further (e.g., refs. 7 and 22)
links information theory to the study of meaning, a connection
that has been contested since Shannon’s (23) foundational work.
IB has previously been used to find semantically meaningful clus-
ters of words (ref. 15; see also ref. 22), but has not previously
been used to account for word meanings as we do here.

Communication Model
To define our hypothesis precisely, we first formulate a basic
communication scenario involving a speaker and a listener.
This formulation is based on Shannon’s classical communica-
tion model (23), but specifically concerns messages that are
represented as distributions over the environment (Fig. 1). We
represent the environment, or universe, as a set of objects U . The
state of the environment can be any object u ∈U , and we let U
be a random variable that represents a possible state. We define
a meaning to be a distribution m(u) over U and assume the exis-
tence of a cognitive source that generates intended meanings for
the speaker. This source is defined by a distribution p(m) over a
set of meanings,M, that the speaker can represent. Each mean-
ing reflects a subjective belief about the state of the environment.
If the speaker’s intention is m ∈M, this indicates that she wishes
to communicate her belief that U ∼m(u). We consider a color
communication model in which U is restricted to colors and each
m ∈M is a distribution over colors.

The speaker communicates m by producing a word w , taken
from a shared lexicon of size K . The speaker selects words
according to a naming policy q(w |m). This distribution is
a stochastic encoder that compresses meanings into words.
Because we focus on the uncertainty involved in compressing
meanings into words, rather than the uncertainty involved in
transmission, we assume an idealized noiseless channel that con-
veys its input unaltered as its output. This channel may have a
limited capacity, which imposes a constraint on the available lex-
icon size. In this case, the listener receives w and interprets it as
meaning m̂ based on her interpretation policy q(m̂|w), which is a
decoder. We focus on the efficiency of the encoder and therefore
assume an optimal Bayesian listener with respect to the speaker
(see SI Appendix, section 1.2 for derivation), who interprets every
word w deterministically as meaning

A

B

Fig. 1. (A) Shannon’s (23) communication model. In our instantiation of
this model, the source message M and its reconstruction M̂ are distributions
over objects in the universe U . We refer to these messages as meanings. M is
compressed into a code, or word, W . We assume that W is transmitted over
an idealized noiseless channel and that the reconstruction M̂ of the source
message is based on W . The accuracy of communication is determined by
comparing M and M̂, and the complexity of the lexicon is determined by the
mapping from M to W . (B) Color communication example, where U is a set
of colors, shown for simplicity along a single dimension. A specific meaning
m is drawn from p(m). The speaker communicates m by uttering the word
“blue,” and the listener interprets blue as meaning m̂.

m̂w (u) =
∑

m∈M
q(m|w)m(u), [1]

where q(m|w) is obtained by applying Bayes’ rule with respect to
q(w |m) and p(m).

In this model, different color-naming systems correspond
to different encoders, and our goal is to test the hypothe-
sis that encoders corresponding to color-naming systems found
in the world’s languages are information-theoretically effi-
cient. We next describe the elements of this model in further
detail.

Encoders. Our primary data source for empirically estimating
encoders was the World Color Survey (WCS), which contains
color-naming data from 110 languages of nonindustrialized soci-
eties (24). Native speakers of each language provided names for
the 330 color chips shown in Fig. 2, Upper. We also analyzed
color-naming data from English, collected relative to the same
stimulus array (25). We assumed that each color chip c is asso-
ciated with a unique meaning mc and therefore estimated an
encoder ql(w |mc) for each language l from the empirical dis-
tribution of word w given chip c (see data rows in Fig. 4 for
examples). Each such encoder corresponds to a representative
speaker for language l , obtained by averaging naming responses
over speakers.

Meaning Space. In our formulation, colors are mentally rep-
resented as distributions. Following previous work (6, 8), we
ground these distributions in an established model of human
color perception by representing colors in 3D CIELAB space
(Fig. 2, Lower) in which Euclidean distance between nearby
colors is correlated with perceptual difference. We define the
meaning associated with chip c to be an isotropic Gaussian cen-
tered at c, namely mc(u)∝ exp

(
− 1

2σ2 ‖u − c‖2
)
. mc reflects the

speaker’s subjective belief over colors that is invoked by chip
c, and the scale of these Gaussians reflects her level of per-
ceptual uncertainty. We take σ2 = 64, which corresponds to a
distance over which two colors can be comfortably distinguished
(SI Appendix, section 6.3).

Cognitive Source. The cognitive source p(m) specifies how often
different meanings m must be communicated by a speaker.
In principle, different cultures may have different communica-
tive needs (8); we leave such language-specific analysis for
future work and instead consider a universal source for all lan-
guages. Previous studies have used the uniform distribution for
this purpose (8, 10); however, it seems unlikely that all col-
ors are in fact equally frequent in natural communication. We
therefore consider an alternative approach, while retaining the
uniform distribution as a baseline. Specifically, we focus on
a source that is derived from the notion of least informative
(LI) priors (Materials and Methods), a data-driven approach that
requires minimal assumptions. This approach also accounts for
the data better than another approach based on image statistics
(SI Appendix, section 7.2).

Bounds on Semantic Efficiency
From an information-theoretic perspective, an optimal encoder
minimizes complexity by compressing the intended message M
as much as possible, while maximizing the accuracy of its inter-
pretation M̂ (Fig. 1A). In general, this principle is formalized by
rate distortion theory (RDT) (19). In the special case in which
messages are distributions, the IB principle (14) provides a nat-
ural formalization. In IB, as in RDT (SI Appendix, section 1.3),
the complexity of a lexicon is measured by the number of bits
of information that are required for representing the intended
meaning. In our formulation the speaker represents her intended

7938 | www.pnas.org/cgi/doi/10.1073/pnas.1800521115 Zaslavsky et al.
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Fig. 2. (Upper) The WCS stimulus palette. Columns correspond to equally
spaced Munsell hues. Rows correspond to equally spaced lightness values.
Each stimulus is at the maximum available saturation for that hue/lightness
combination. (Lower) These colors are irregularly distributed in 3D CIELAB
color space.

meaning M by W , using an encoder q(w |m), and thus the
complexity is given by the information rate

Iq(M ;W ) =
∑

m,w

p(m)q(w |m) log
q(w |m)

q(w)
, [2]

where q(w) =
∑

m∈M p(m)q(w |m). Minimal complexity, i.e.,
Iq(M ;W ) = 0, can be achieved if the speaker uses a sin-
gle word to describe all her intended meanings. However, in
this case the listener will not have any information about the
speaker’s intended meaning. To enable useful communication,
W must contain some information about M ; i.e., the complexity
Iq(M ;W ) must be greater than zero.

The accuracy of a lexicon is inversely related to the cost
of a misinterpreted or distorted meaning. While RDT allows
an arbitrary distortion measure, IB considers specifically the
Kullback–Leibler (KL) divergence,

D [m‖m̂]=
∑

u∈U
m(u) log

m(u)

m̂(u)
, [3]

which is a natural distortion measure between distributions. [For
a general justification of the KL divergence see ref. 26, and in
the context of IB see ref. 18.] Note that this quantity is 0 if and
only if the listener’s interpretation is accurate; namely, m̂ ≡m .
The distortion between the speaker and the ideal listener is the
expected KL divergence,

Eq

[
D [M ‖M̂ ]

]
=
∑

m,w

p(m)q(w |m)D [m‖m̂w ]. [4]

In this case, the accuracy of the lexicon is directly related to
Shannon’s mutual information,

Eq

[
D [M ‖M̂ ]

]
= I (M ;U )− Iq(W ;U ). [5]

Since I (M ;U ) is independent of q(w |m), minimizing distortion
is equivalent to maximizing the informativeness, or accuracy, of
the lexicon, quantified by Iq(W ;U ). This means that mutual
information appears in our setting as a natural measure both for
complexity and for semantic informativeness.

If the speaker and the listener are unwilling to tolerate any
information loss, the speaker must assign a unique word to each
meaning, which requires maximal complexity. However, between
the two extremes of minimal complexity and maximal accuracy,
an optimal trade-off between these two competing needs can be
obtained by minimizing the IB objective function,

Fβ [q(w |m)] = Iq(M ;W )−βIq(W ;U ), [6]

where β≥ 1 is the trade-off parameter. Every language l , defined
by an encoder ql(w |m), attains a certain level of complexity and
a certain level of accuracy. These two quantities can be plotted
against each other. Fig. 3 shows this information plane for the
present color communication model. The maximal accuracy that
a language l can achieve, given its complexity, is bounded from
above. Similarly, the minimal complexity that l can achieve given
its accuracy is bounded from below. These bounds are given by
the complexity and accuracy of the set of hypothetical IB lan-
guages that attain the minimum of Eq. 6 for different values of
β. The IB curve is the theoretical limit defined by these optimal
languages, and all trade-offs above this curve are unachievable.

Predictions
Near-Optimal Trade-offs. Our hypothesis is that languages evolve
under pressure for efficient compression, as defined by IB, which
implies that they are pressured to minimize Fβ for some value
of β. If our hypothesis is true, then for each language l there
should be at least one value, βl , for which that language is
close to the optimal F∗βl

. If we are able to find a good candi-
date βl for every language, this would support our hypothesis,
because such an outcome would be unlikely given systems that
evolved independently of Fβ . A natural choice for fitting βl is
the value of β that minimizes ∆Fβ =Fβ [ql ]−F∗β . We measure
the efficiency loss, or deviation from optimality, of language l by
εl = 1

βl
∆Fβl .

Structure of Semantic Categories. Previous work (e.g., ref. 8) has
sometimes summarized color-naming responses across multiple
speakers of the same language by recording the modal naming
response for each chip, resulting in a hard categorical partition
of the stimulus array, called a mode map (e.g., Fig. 4A). How-
ever, IB predicts that if some information loss is allowed, i.e.,
β <∞, then an efficient encoder would induce soft rather than
hard categories. This follows from the structure of the IB optima
(14), given by

qβ(w |m)∝ qβ(w) exp(−βD [m‖m̂w ]), [7]

which is satisfied self-consistently with Eq. 1 and with the
marginal qβ(w). We therefore evaluate how well our model
accounts for mode maps, but more importantly we also evaluate
how well it accounts for the full color-naming distribution across

Fig. 3. Color-naming systems across languages (blue circles) achieve near-
optimal compression. The theoretical limit is defined by the IB curve (black).
A total of 93% of the languages achieve better trade-offs than any of their
hypothetical variants (gray circles). Small light-blue Xs mark the languages
in Fig. 4, which are ordered by complexity.
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A

B

C

Fig. 4. Similarity between color-naming distributions of languages (data rows) and the corresponding optimal encoders at βl (IB rows). Each color category
is represented by the centroid color of the category. (A) Mode maps. Each chip is colored according to its modal category. (B) Contours of the naming
distribution. Solid lines correspond to level sets between 0.5 and 0.9; dashed lines correspond to level sets of 0.4 and 0.45. (C) Naming probabilities along
the hue dimension of row F in the WCS palette.

speakers of a given language. If languages achieve near-optimal
trade-offs, and their category structure is similar to that of the
corresponding IB encoders, this would provide converging sup-
port for our hypothesis. We evaluate the dissimilarity between
the mode maps of ql and qβl by the normalized information
distance (NID) (27) and the dissimilarity between their full prob-
abilistic structures by a generalization of NID to soft partitions
(gNID) (Materials and Methods).

Results
We consider the color communication model with the IB objec-
tive of efficient compression (IB model) and, as a baseline for
comparison, with RKK’s efficiency objective (RKK+ model, see
SI Appendix, section 4). We consider each model with the LI
source and again with the uniform source. Because the LI source
is estimated from the naming data, it is necessary to control
for overfitting. Therefore, we performed fivefold cross-validation
over the languages used for estimating the LI source. Table 1
shows that IB with the LI source provides the best account of
the data. Similar results are obtained when estimating the LI
source from all folds, and therefore the results with this source
(SI Appendix, Fig. S1) are used for the figures. Table 1 and Fig. 3
show that all languages are near-optimally efficient with βl that
is only slightly greater than 1; this means that for color naming,
maximizing accuracy is only slightly more important than mini-
mizing complexity. These trade-offs correspond to the steepest
part of the IB curve, in which every additional bit in complex-
ity contributes the most to the accuracy of communication. In
this sense, naturally occurring color-naming systems lie along the
most active area of the curve, before the point of diminishing
returns.

IB achieves 74% improvement in εl and 61% improvement
in gNID compared to RKK+ with the LI source; however, the
difference in NID is not substantial. Similar behavior appears

with the uniform source. This result makes sense: The RKK+
bounds correspond to deterministic limits of suboptimal IB
curves in which the lexicon size is restricted (SI Appendix, sec-
tion 4.6). Because RKK’s objective predicts deterministic color-
naming systems, it can account for mode maps but not for full
color-naming distributions.

Although Table 1 and Fig. 3 suggest that color-naming systems
in the world’s languages are near-optimally efficient, a possible
objection is that perhaps most reasonable naming systems are
near optimal according to IB, such that there is nothing privi-
leged about the actual naming systems we consider. To rule out
the possibility that IB is too permissive, we follow ref. 6 and con-
struct for each language a control set of 39 hypothetical variants
of that language’s color-naming system, by rotating that nam-
ing system in the hue dimension across the columns of the WCS
palette (SI Appendix, section 8). A total of 93% of the languages
achieve better trade-offs than any of their hypothetical variants,
and the remaining 7% achieve better trade-offs than most of
their variants (Fig. 3).

The quantitative results in Table 1 are supported by visual
comparison of the naming data with IB-optimal systems. Fig. 4
shows that IB accounts to a large extent for the structure of

Table 1. Quantitative evaluation via fivefold cross-validation

Source Model εl gNID NID βl

LI IB 0.18 (±0.07) 0.18 (±0.10) 0.31 (±0.07) 1.03 (±0.01)
RKK+ 0.70 (±0.23) 0.47 (±0.10) 0.32 (±0.10)

U IB 0.24 (±0.09) 0.39 (±0.12) 0.56 (±0.07) 1.06 (±0.01)
RKK+ 0.95 (±0.22) 0.65 (±0.08) 0.50 (±0.10)

Shown are averages over left-out languages±1 SD for the LI and uniform
(U) source distributions. Lower values of εl, gNID, and NID are better. Best
scores are in boldface.
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color naming in four languages with increasing complexity. Simi-
lar results for all languages are presented in SI Appendix, section
10. The category colors in Fig. 4 correspond to the color cen-
troids of each category, and it can be seen that the data centroids
are similar to the corresponding IB centroids. In addition, the IB
encoders exhibit soft category boundaries and sometimes leave
parts of color space without a clearly dominant name, as is seen
empirically (9, 13). Note that the qualitatively different solutions
along the IB rows are caused solely by small changes in β. This
single parameter controls the complexity and accuracy of the IB
solutions.

Tracking the IB centroids along the IB curve (Fig. 5) reveals a
hierarchy of color categories. These categories evolve through an
annealing process (28), by gradually increasing β (SI Appendix,
Movie S1). During this process, the IB systems undergo a
sequence of structural phase transitions, in which the number
of distinguishable color categories increases—corresponding to
transitions between discrete stages in Berlin and Kay’s (11)
proposal. Near these critical points, however, one often finds
inconsistent, low-consensus naming—consistent with more con-
tinuous views of color category evolution (9, 12, 13). It is in
this sense that the IB principle provides a single explanation for
aspects of the data that have traditionally been associated with
these different positions.

By assigning βl to each language we essentially map it to a
point on this trajectory of efficient solutions. Consider for exam-
ple the languages shown in Figs. 4 and 5 (see SI Appendix, Movie
S2 for more examples). Culina is mapped to a point right after
a phase transition in which a green category emerges. This new
green category does not appear in the mode maps of Fig. 4A, Left
(data and IB), because it is dominated by other color categories,
but it can be detected in Fig. 4C. Such dominated categories
could easily be overlooked or dismissed as noise in the data,
but IB predicts that they should exist in some cases. In partic-
ular, dominated categories tend to appear near criticality, as a
new category gains positive probability mass. The color-naming
systems of Agarabi and Dyimini are similar to each other and
are mapped to two nearby points after the next phase transi-
tion, in which a blue category emerges. These two languages each
have six major color categories; however, IB assigns higher com-
plexity to Dyimini. The higher complexity for Dyimini is due to
the blue category, which has a clear representation in Dyimini
but appears at an earlier, lower consensus stage in Agarabi. SI

Fig. 5. Bifurcations of the IB color categories (Movie S1). The y axis shows
the relative accuracy of each category w (defined in Materials and Methods).
Colors correspond to centroids and width is proportional to the weight of
each category, i.e., qβ (w). Black vertical lines correspond to the IB systems
in Fig. 4.

Appendix, Movie S1 shows that low agreement around blue hues
is predicted by IB for languages that operate around 1.026≤βl ≤
1.033, and this is consistent with several WCS languages (e.g.,
Aguacatec and Berik in SI Appendix, section 10; also ref. 29), as
well as some other languages (9, 13).

English is mapped to a relatively complex point in the IB hier-
archy. The ability of IB to account in large part for English should
not be taken for granted, since all IB encoders were evaluated
according to a cognitive source that is heavily weighted toward
the WCS languages, which have fewer categories than English.
There are some differences between English and its correspond-
ing IB system, including the pink category that appears later in
the IB hierarchy. Such discrepancies may be explained by inac-
curacies in the cognitive source, the perceptual model, or the
estimation of βl .

The main qualitative discrepancy between the IB predictions
and the data appears at lower complexities. IB predicts that a
yellow category emerges at the earliest stage, followed by black,
white, and red. The main categories in low-complexity WCS lan-
guages correspond to black, white, and red, but these languages
do not have the dominant yellow category predicted by IB. The
early emergence of yellow in IB is consistent with the promi-
nence of yellow in the irregular distribution of stimulus colors in
CIELAB space (Fig. 2, Lower Right). One possible explanation
for the yellow discrepancy is that the low-complexity WCS lan-
guages may reflect suboptimal yet reasonably efficient solutions,
as they all lie close to the curve.

Discussion
We have shown that color-naming systems across languages
achieve near-optimally efficient compression, as predicted by the
IB principle. In addition, this principle provides a theoretical
explanation for the efficiency of soft categories and inconsistent
naming. Our analysis has also revealed that languages tend to
exhibit only a slight preference for accuracy over complexity in
color naming and that small changes in an efficiency trade-off
parameter account to a large extent for the wide variation in
color naming observed across languages.

The growth of new categories along the IB curve captures
ideas associated with opposing theories of color term evolu-
tion (see also refs. 9 and 25). Apart from the yellow discrep-
ancy, the successive refinement of the IB categories at critical
points roughly recapitulates Berlin and Kay’s (11) evolutionary
sequence. However, the IB categories also evolve between phase
transitions and new categories tend to appear gradually, which
accounts for low-consensus regions (9, 12, 13). In addition, the
IB sequence makes predictions about color-naming systems at
complexities much higher than English and may thus account
for the continuing evolution of high-complexity languages (25).
This suggests a theory for the evolution of color terms in which
semantic categories evolve through an annealing process. In this
process, a trade-off parameter, analogous to inverse temperature
in statistical physics, gradually increases and navigates languages
toward more refined representations along the IB curve, cap-
turing both discrete and continuous aspects of color-naming
evolution in a single process.

The generality of the principles we invoke suggests that a drive
for information-theoretic efficiency may not be unique to color
naming. The only domain-specific component in our analysis is
the structure of the meaning space. An important direction for
future research is exploring the generality of these findings to
other semantic domains.

Materials and Methods
Treatment of the Data. The WCS data are available online at www1.icsi.
berkeley.edu/wcs. English data were provided upon request by Lindsey and
Brown (25). Fifteen WCS languages were excluded from the LI source and
from our quantitative evaluation, to ensure that naming probabilities for
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each language were estimated from at least five responses per chip (SI
Appendix, section 4.1).

LI Source. A source distribution can be defined from a prior over colors by
setting p(mc) = p(c). For each language l, we constructed a LI source pl(c) by
maximizing the entropy of c while also minimizing the expected surprisal of
c given a color term w in that language (see SI Appendix, section 2 for more
details). We obtained a single LI source by averaging the language-specific
priors.

IB Curve. For each value of β the IB solution is evaluated using the IB
method (14). IB is a nonconvex problem, and therefore only convergence
to local optima is guaranteed. To mitigate this problem we fix K = 330 and
use the method of reverse deterministic annealing to evaluate the IB curve
(SI Appendix, section 1.4).

Dissimilarity Between Naming Distributions. Assume two speakers that inde-
pendently describe m by W1∼ q1(w1|m) and W2∼ q2(w2|m). We define the
dissimilarity between q1 and q2 by

gNID(W1, W2) = 1− I(W1; W2)

max{I(W1; W′
1), I(W2; W′

2)} , [8]

where W′
i corresponds to another independent speaker that uses qi . If q1

and q2 are deterministic, i.e., they induce hard partitions, then gNID reduces
to NID (SI Appendix, section 3 for more details).

Relative Accuracy. We define the informativeness of a word w by

Iq(w) = D[m̂w‖m0], [9]

where m0(u) =
∑

m p(m)m(u) is the prior over u before knowing w. Note
that the accuracy of a language can be written as Iq(W ; U) =

∑
w q(w)Iq(w),

and therefore we define the relative accuracy of w (y axis in Fig. 5) by
Iq(w)− Iq(W ; U).
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Movie Captions
Movie S1. Evolution of the IB color naming systems. Left panel: Bifurcation diagram, similar to Fig.5. This
diagram shows the full range of IB solutions, whereas Fig.5 shows only the range relevant for the languages in our data.
The black line indicates the location in the diagram that corresponds to the value of β. Right panel: Visualization
(as in Fig.4) of the IB system that corresponds to β. The IB systems evolve as β gradually increases from β = 1,
where there is only one category, to β = 213, where each color is mapped deterministically to its own unique category.
In between these two extremes, the IB systems induce soft color categories. Structural phase transitions occur at
critical values of β along this trajectory of efficient solutions, in which new categories appear. Low-consensus regions
often appear in systems near these phase transitions.

Movie S2. Languages achieve near-optimal compression. Left panel: The red dot traces along the optimal
systems on the IB curve (theoretical limit), while the blue dot follows nearby, indicating the position of selected
languages just below the curve in the information plane. A total of 23 representative languages are shown, which
were selected to demonstrate the range of empirical variation accommodated by the IB model and the relation of
that variation to languages’ positions near the IB curve. Right panel: Contour plots of the language’s naming
distribution (top) and the IB encoder (bottom) that correspond to the blue and red dots on the left panel, respectively.
The IB systems captures much of the structural variability in the data, and even languages that are less similar to the
IB systems are still highly efficient, as seen on the left panel.

Supporting Information Text

1. Theoretical framework

1.1. Summary of notation. We use capital letters to denote random variables (e.g. M and U), calligraphic letters to
denote their support (e.g. M and U), and lower case letters to denote a specific realization (e.g. m and u). In our
formulation we consider a finite set of distributionsM. Each element in this set (i.e., each m ∈M) is a distribution
over the set U . In other words, m is a function that takes u as an argument. We use the notation m(u) when we wish
to make explicit that m is a function of u, or when we wish to denote the probability of a specific u according to m.
It may be helpful to think of m(u) in terms of conditional probabilities, i.e., m(u) = p(u|m). Table S1 summarizes
the notation used in the IB framework (1), in our current formulation of IB, in the framework of RKK (2) and in the
adjusted RKK model (RKK+) which we constructed as a baseline for evaluation. A detailed description of RKK+
appears in section 4.

Table S1. Summary of notation

Component IB (1999) IB (current) RKK+ (current) RKK (2015)

Communication
model

Target variable / universe y ∈ Y u ∈ U u ∈ U t ∈ U
Source variable x ∈ X m ∈ M m ∈ M -
Speaker’s intended meaning p(y|x) m(u) m(u) s(t)
Source distribution / need p(x) p(m) p(m) n(t)
Cluster / word x̂ ∈ X̂ w ∈ W w ∈ W w ∈ W
Encoder / naming distribution q(x̂|x) q(w|m) q(w|m) t 7→ w if t ∈ cat(w)
Decoder x̂ 7→ q(y|x̂) q(m̂|w) q(m̂|w) -
Listener’s interpreted meaning q(y|x̂) m̂w(u) m̂w(u) l(t)

Optimization
principle

Complexity Iq(X; X̂) Iq(M ;W ) logK K = |W|
Distortion / communicative cost D[p(y|x)‖q(y|x̂)] D[m‖m̂] D[m‖m̂] D[s‖l]
Accuracy Iq(X̂;Y ) Iq(W ;U) Iq(W ;U) -
Tradeoff parameter β β - -

1.2. Bayesian listener. We show that the ideal listener with respect to a given speaker is an optimal Bayesian decision
maker. In our case, this means that we can assume an ideal listener that always decodes w deterministically by
interpreting it as meaning m̂w(u) =

∑
m∈M q(m|w)m(u), where q(m|w) is obtained by applying Bayes’ rule,

q(m|w) = q(w|m)p(m)
q(w) , [S1]
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where q(w) =
∑
m′ p(m′)q(w|m′). To show that this Bayesian listener is optimal, assume that the speaker’s encoder

is given by q(w|m). The optimal listener for this speaker is defined by the decoder q(m̂|w) that minimizes

Fβ [q] = Iq(M ;W )− βIq(W ;U) = Iq(M ;W )− β
(
I(M ;U)− Eq

[
D[M‖M̂ ]

])
, [S2]

where the second equality follows from Eq. (5). Note that I(M ;U) is constant in q and Iq(M ;W ) depends on the
encoder but not on the decoder. Only the last term depends on the decoder, and it holds that

Eq
[
D[M‖M̂ ]

]
=
∑

m,w,m̂

p(m)q(w|m)q(m̂|w)D [m‖m̂] [S3]

=
∑

m,w,m̂

q(w)q(m|w)q(m̂|w)D [m‖m̂] [S4]

≥
∑

w

q(w) argmin
m̂′

∑

m

q(m|w)D [m‖m̂′] [S5]

Therefore, there is a deterministic decoder q(m̂|w) that minimizes Eq. (S2),

q(m̂|w) =





1 if m̂ = argmin
m̂′

Eq(m|w) [D [m‖m̂′]]

0 otherwise
. [S6]

Differentiating Eq(m|w) [D [m‖m̂′]] with respect to m̂′ and equating to 0 gives that the minimum is attained at m̂w.
Since

∑
u m̂w(u) = 1 we did not need to impose this normalization constraint on the optimization, and because the

KL divergence is convex in both arguments m̂w is indeed the minimum.

1.3. Relation between IB and rate distortion theory. It has been shown that IB can be considered a special type of
rate distortion (RD) with a variable distortion measure (3), and that the IB distortion measure has unique properties
that distinguish IB from other RD problems (4). Furthermore, it was shown in (4) that IB can be considered a
standard RD problem over probability measures, where the reconstruction alphabet is continuous. This view is closely
related to the interpretation of IB as distributional clustering (5), in contrast to many applications of IB in the
context of supervised learning (6). The setting we consider in this paper corresponds to a RD problem where M is
compressed into M̂ . Although we are explicitly interested in the compression of M into a codeword W and in the
reconstruction of M̂ from W , it can be shown that the two problems are equivalent under mild assumptions.

A formal proof of this statement is beyond the scope of this work, but the main idea is that we can assume w.l.o.g.
that the decoder is information lossless, i.e., Iq(M ;W ) = Iq(M ; M̂). In this case, minimizing Fβ [q] is equivalent to
minimizing the RD objective Iq(M ; M̂) + βEq[D[M‖M̂ ]], under the constraint q(m̂|m) =

∑
w q(w|m)1[m̂=m̂w]. It is

possible to show that, under mild assumptions, this additional constraint on q(m̂|m) would not change the optimum
of the RD problem. However, here we will only justify the assumption that the decoder is information lossless. Let
ϕ(w) = m̂w with respect to some encoder q. The decoder is information lossless if ϕ(w) is a one-to-one mapping over
the support of q (i.e., over Sup(q) = {w ∈ W : q(w) > 0}). We can assume that this property holds, because otherwise
it is possible to construct q′ for which this property holds and Fβ [q′] ≤ Fβ [q]. Assume there are w1, w2 ∈ Sup(q) such
that w1 6= w2 and ϕ(w1) = ϕ(w2). Define q′ by merging them, namely for all m let q′(w1|m) = q(w1|m) + q(w2|m),
q′(w2|m) = 0, and for all w 6= w1, w2 let q′(w|m) = q(w|m). This does not change the expected distortion; however,
Iq′(M ;W ) ≤ Iq(M ;W ).

1.4. The IB method and deterministic annealing. Given a value of β, the IB method (1) iteratively updates the
following IB equations until convergence,

qβ(w|m) = qβ(w)
Z(m;β) exp(−βD [m‖m̂w]) [S7]

qβ(w) =
∑

m∈M
qβ(w|m)p(m) [S8]

m̂w(u) =
∑

m∈M
m(u)qβ(m|w) , [S9]

where Z(m;β) is the normalization factor. At the optimum, these equations are satisfied self-consistently. Because
IB is a non-convex problem, the method of deterministic annealing (7) is often used to mitigate the problem of
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converging to sub-optimal fixed points of the IB equations (e.g. 5, 8). Deterministic annealing starts at a low value of
β (β = 1 in IB) where the solution is trivial, and then gradually increases β. For each β, the IB method is initialized
with the solution found for the previous value of β. In practice, for better convergence, we evaluated the IB curve by
reverse deterministic annealing (9); i.e., starting at a very high value of β, where the solution is given by a one-to-one
mapping from M to W , and then gradually decreasing β. We repeated this process with 1500 values of β in [1, 213].

2. Least informative source
How to accurately model a cognitive process that generates meanings for the speaker is an open question that is
beyond the scope of this work. Instead, we wish to estimate a source distribution that is more realistic than the
uniform distribution, but does not require prior knowledge. In this work we propose a general approach for doing so,
based on the following observation: if a source distribution exists, it should be reflected somehow in the way people
speak, i.e., in the naming distribution. Therefore, it makes sense to try to infer the source distribution directly from
the naming data. We do so without making assumptions about the cognitive source by building on the notion of least
informative priors. Our approach is domain-general; however, for simplicity we present it here in terms our color
naming model. In section 7 we discuss other approaches for estimating the source distribution, and show that our
conclusions also hold under these alternative source distributions.

2.1. Definition for a given language. We begin by defining a least informative prior over color chips, with respect to a
given naming distribution ql(w|c). Because we assumed that each chip c is associated with a unique meaning mc, any
prior p(c) induces a source distribution by setting p(mc) = p(c). One common approach for obtaining uninformative
priors is by invoking the maximum entropy principle. However, in our case the maximum entropy distribution over
color chips is simply the uniform distribution. Another natural approach in our setting is to find a distribution that
maximizes the entropy of c while minimizing the expected uncertainty over c give a term w in the language. That is,

pl(c) = argmax
p(c)

H(C)−Hq(C|W ) [S10]

where Hq(C|W ) = −∑c,w p(c)q(w|c) log q(c|w)
p(c) is the conditional entropy, and q(c|w) = q(w|c)p(c)

q(w) is the posterior
distribution of c given w.

This definition has two interesting interpretations, in addition to being a constrained maximum entropy distribution.
First, note that

Iq(W ;C) = argmax
p(c)

H(C)−Hq(C|W ) , [S11]

which implies that pl(c) maximizes the mutual information between colors and words. This type of prior distribution
is also called a capacity achieving prior, and can be evaluated using the Blahut-Arimoto algorithm (10, 11). Note that
in the IB model, a language l would be maximally complex if the source distribution were defined from pl(c). This
contrasts with the IB principle, which aims to minimize complexity. Second, pl(c) is considered the least informative
prior over c in the sense that it minimizes information about the posterior q(c|w) by maximizing the KL divergence
between the prior and posterior. This interpretation follows from the identity

Iq(W ;C) =
∑

w

q(w)D[q(c|w)‖p(c)] , [S12]

and it is closely related to the notion of reference priors in Bayesian inference (12). Reference priors are considered
objective priors in the sense that they depend solely on the given distribution q(w|c), but not on other assumptions
that may reflect subjective prior beliefs.

2.2. Estimation across languages. Our approach for estimating a LI source can be applied on a language-specific
basis. However, we leave this language-specific analysis for future research and instead focus on estimating a single
source distribution for all languages. We obtain this universal LI source by averaging across the language-specific LI
priors, namely

pLI(mc) = 1
L

L∑

l=1
pl(c) . [S13]

To control for overfitting and to test the ability of our model to generalize to languages which are not used for
estimating the source, we performed 5-fold cross-validation over the languages that contribute to the average in
Eq. (S13). Fifteen WCS languages were excluded from this process, to ensure that the naming probabilities for each
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language were estimated from at least 5 responses for every chip. This regularization process is further explained
in section 4.1, and the excluded 15 languages are listed in section 10. Section 10 contains the results for all 111
languages.

The full LI source, estimated by averaging over 96 languages, is shown in Fig.S1. This source distribution is
non-uniform; however, it still has relatively high entropy, H[p(mc)] ≈ 7.41, compared to the maximal entropy
log2(330) ≈ 8.36. This means that the KL divergence between the LI source and the uniform source is roughly 1 bit.

A

B

C

D

E

F

G

H

I

J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

Fig. S1. The LI prior over the color chips obtained by averaging across the LI priors of 96 languages. Each chip is colored according to its probability
mass, where black corresponds to probability 0 and white corresponds to probability 1. Gray colors are based on a logarithmic scale.

3. Dissimilarity measures
We compared different encoders, or color naming systems, by building on standard information-theoretic dissimilarity
measures between clusterings (13). In our setting, these measures have an intuitive interpretation that relates them
to the information between speakers of two languages.

Assume a language l1 with lexiconW1 and an encoder q1(w1|m), and a language l2 with lexiconW2 and an encoder
q2(w1|m). In addition, assume that given a meaning m ∼ p(m), a speaker of l1 produces a word W1 ∼ q1(w1|m) and
a speaker of l2 independently produces a word W2 ∼ q2(w2|m). The joint distribution of W1 and W2 is given by

q(w1, w2) =
∑

m∈M
p(m)q1(w1|m)q2(w2|m) . [S14]

Similarly, we can consider the joint distribution of two speakers of the same language that independently produce
words Wi and W ′i given m,

q(wi, w′i) =
∑

m∈M
p(m)qi(wi|m)qi(w′i|m) . [S15]

Intuitively, two languages are similar if the cross-language information I(W1;W2) is large compared to the information
within each language.

3.1. Normalized Information Distance (NID). The normalized information distance (NID 13) is defined by

NID(W1,W2) = 1− I(W1;W2)
max{H(W1), H(W2)} . [S16]

NID has been defined in (13) for hard partitions; i.e., in the case where q(w|m) is a deterministic distribution. In this
case NID has several desirable properties (13): it is a metric, it is bounded in the interval [0, 1], and it was shown to
outperform other methods for measuring similarity between hard clusterings. Therefore, we measured the distance
between the mode maps that correspond to q1 and q2 by the NID between them.

3.2. Generalization of NID to soft partitions (gNID). Although it is straightforward to apply the NID formula to soft
partitions (soft-NID), we noticed that soft-NID is not sensitive enough to differences in the full probabilistic structure
of the encoders. This can be seen in Fig.S2, which shows Dyimini for example. The soft-NID between Dyimini and
different IB theoretical systems along the IB curve has a relatively flat part. This means that soft-NID can barely
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distinguish between these different IB systems. We therefore slightly modified soft-NID in a way that also generalized
NID to soft partitions. We define this generalization by

gNID(W1,W2) = 1− I(W1;W2)
max{I(W1,W ′1), I(W2,W ′2)} . [S17]

If q1(w1|m) and q2(w2|m) are both deterministic conditional distributions (i.e.,W1 andW2 are selected deterministically
given m), then gNID reduces to NID. To see this, notice that I(Wi;W ′i ) = H(Wi)−H(Wi|W ′i ) and H(Wi|W ′i ) = 0
in the deterministic case.

0 1 2 3 4 5 6 7

Complexity, I(M ;W ) bis

0.0

0.2

0.4

0.6

0.8

1.0

gNID
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Fig. S2. Dissimilarity measures between the color naming system of Dyimini and the IB theoretical systems along the IB curve. gNID and soft-NID apply
to the full distributions, whereas NID applies to their corresponding mode maps.

gNID has a few desirable properties. It holds that gNID(W1,W2) ≤ 1 because mutual information is non-negative,
and gNID(W1,W2) = 1 when W1 and W2 are independent because in that case I(W1;W2) = 0. When the two
encoders are equivalent, then gNID(W1,W2) = 0, as opposed to soft-NID which could be positive in this case.
Although gNID in general is not necessarily non-negative, we did not encounter cases in which the gNID between a
language’s color naming distribution and an IB or RKK+ encoder was negative. In addition, for most languages gNID
exhibits qualitatively similar behavior as seen for Dyimini (Fig.S2). That is, the gNID between the language and the
IB systems follows a similar trend as NID and soft-NID; however, unlike NID and soft-NID, gNID is unimodal.

4. The RKK+ model
The RKK+ model is based on our communication model (Fig.1), but the definition of efficiency and the treatment of
the data are derived from RKK’s approach to color naming (2). Our communication model is very similar to RKK’s
communication model, although we relaxed a few assumptions made by RKK. In this section we discuss in detail the
derivation of RKK+ from RKK’s notion of efficiency, and explain the differences between the RKK+ model and
RKK’s color naming model. The mapping between our notation and RKK’s notation is described in Table S1. For
simplicity, we use here our notation for RKK+ and refer to the components of RKK’s color naming model by the
corresponding RKK+ notation.

4.1. Encoders based on major color terms. RKK’s approach to the WCS color naming data relies on the notion of
a major color term. According to RKK, w is a major color term in a given language, if it is the modal term for at
least 10 color chips. Otherwise, w is considered a minor color term. For English, which was not included in RKK’s
color naming analysis, we set the threshold at 5 chips in order to obtain the 11 basic color terms in English. As in
RKK’s analysis, only data for major color terms is considered for the evaluation of the RKK+ model. That is, for
each language l RKK+ considers a naming distribution q+

l (w|c) which is obtained from ql(w|c) by restricting it only
to the major color terms in l. Restricting the data of a language to major terms may result in insufficient data for
estimating the color naming distribution of that language. In 15 WCS languages some chips had fewer than 5 naming
responses, and therefore we excluded these languages from the quantitative model evaluation and from the estimation
of the LI source. These 15 languages are presented in section 10.
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4.2. Relaxing RKK’s assumptions.

Stochastic speaker. RKK made the simplifying assumption that the speaker chooses words deterministically, which
induces hard partitions of the color space into named categories. For each color term w RKK defined cat(w) by the
set of colors that are named by w. This corresponds to a deterministic encoder: q(w|c) = 1 if c ∈ cat(w) and 0 else.
In RKK+ this assumption was relaxed because the encoder in our communication model can be stochastic.

Perceptual uncertainty. RKK assumed that the speaker has no perceptual uncertainty, which means that colors are
represented by delta functions, i.e., mc(u) = δc,u. In our model we allow for perceptual uncertainty and instead
assume that each color c is represented by the Gaussian mc.

Bayesian listener. RKK assumed that the listener’s interpreted meanings take the form

lw(u) ∝
∑

c∈cat(w)

exp
(
− 1

2σ2 ‖u− c‖
2
)
. [S18]

Although this form is justified (2), we show in section 4.4 that a similar form can emerge directly from the need
for efficiency. Therefore, we waive this assumption and consider a listener who is adapted to the speaker without
additional constraints, as in the IB model.

4.3. Efficiency according to RKK. RKK argued that theoretically efficient languages minimize a communicative cost
for a given level of complexity. We next present their definitions of complexity and communicative cost, and discuss
the specific form these measures take in RKK+.

Complexity. RKK’s notion of complexity is derived from the minimum description length principle on a domain-specific
basis. In the domain of color, RKK defined the complexity of a language by the number of major terms in that
language, denoted here by K. In RKK+ we slightly adjust this complexity measure and consider instead logK. This
does not change the essence of the measure nor the structure of the theoretically optimal systems, but allows us to
measure complexity in bits, as in IB.

Communicative cost. RKK defined the error between the speaker’s intended meaning and listener’s interpreted meaning
by the KL divergence between these two distributions. This definition coincides with the distortion measure in IB.
RKK’s communicative cost is the expected error, as it corresponds to the expected distortion in IB. Following the
same argument as in section 1.2, we obtain that the ideal listener in RKK+ takes the same form as in IB; i.e., it is
given by m̂w. Therefore, in RKK+ the communicative cost of an encoder q(w|m) is given by

D[q] =
∑

m,w

p(m)q(w|m)D [m‖m̂w] . [S19]

This definition is the same as Eq. (S3), but in RKK+ it applies to q+
l instead of ql. We can therefore apply

Eq. (5) to inversely relate the communicative cost D[q+
l ] to the accuracy of the language according to RKK+. The

complexity-accuracy pairs of the languages we considered, according to RKK+, are shown in Fig.S3.

4.4. Structure of the solution. An optimal speaker-listener pair in RKK+ jointly minimizes the expected distortion
between them, for a given K. The hard constraint on the number of major terms is enforced by only considering
encoders q(w|m) over K terms. We have already seen that optimizing this distortion with respect to the speaker’s
interpreted meanings, while fixing the speaker’s encoder, gives m̂w. Now, fix m̂w and consider the encoder that
minimizes Eq. (S19). Since this objective is linear in q(w|m) the minimum is attained at

q(w|m) =





1 if w = wm, where wm = argmin
w′

D [m‖m̂w′ ]

0 otherwise
. [S20]

Formally, this can be shown by following a similar argument as in section 1.2. This means that even though we relaxed
the assumption that the speaker is deterministic, RKK+ does not predict any advantage for non-deterministic speakers
that induce soft categories, and the theoretically optimal RKK+ systems can be characterized by hard partitions of
color space. We can therefore define cat(w) as in RKK’s color naming model, namely cat(w) = {m ∈M : wm = w}.
Plugging back this encoder into the formula of m̂w (i.e., Eq. (1)) and substituting the structure of mc, gives a similar
form as RKK’s assumed listener in Eq. (S18).
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4.5. Evaluation of the RKK+ bounds. The RKK+ fixed points are characterized by the self-consistent cat(w) and
m̂w. This suggests an iterative algorithm for finding these fixed points, which can be considered as K-Means over
distributions where the KL divergence is used as the dissimilarity function. Denote by C(t)

w the set cat(w) obtained at
the t-th iteration of the algorithm. The algorithm can be described as follows:

• Initialize C(0)
w for w ∈ {1, . . . ,K}

• For t = 1, . . . (until convergence) update:

m̂(t)
w (u) = 1

|C(t−1)
w |

∑

m∈Cw
m(u) [S21]

C(t)
w =

{
m ∈M : w = argmin

w′
D[m‖m̂(t)

w′ ]
}

[S22]

This is a non-convex optimization problem, and only convergence to a local optimum is guaranteed. Therefore, for
each K we repeated this algorithm 300 times with random initializations, and selected the best result. We evaluated
the RKK+ bounds for K = 2, . . . , 11. These bounds are shown in Fig.S3 (orange bars). The number of major terms
in the languages we considered varies between 3-11.

4.6. Relation to IB. RKK+ is equivalent to IB when the lexicon size is restricted to K terms, and when β →∞. To
see this, notice that taking β → ∞ means that the speaker and listener only care about accuracy, and therefore
minimizing Fβ amounts to only minimizing the expected distortion. For every K we can evaluate the IB solution
for 0 ≤ β <∞, where the hard constraint on the lexicon size is imposed by considering only encoders q(w|m) over
a lexicon of size K. While the optimal IB curve is estimated for K = |M| (see 4), for smaller values of K we can
obtain sub-optimal IB curves. This means that the IB curve upper bounds the RKK+ bounds. This relation between
IB and RKK+ can be seen in Fig.S3.
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Fig. S3. Comparison between IB and RKK+. Complexity-accuracy values for all languages according to IB (blue dots) and RKK+ (red crosses). The
IB curve (black) is evaluated for K = 330, and it defines the theoretical limit of achievable tradeoffs, including those achieved by the optimal systems
according to RKK+. RKK+ bounds (orange bars) correspond to the deterministic limits of sub-optimal IB curves (gray curves) obtained by restricting the
lexicon size to K = 2, . . . , 11. The efficiency of the languages according to each model is evaluated with respect to the model’s bounds.

5. Quantitative evaluation and variants of the IB model
Our goal in comparing IB with RKK+ is to test which principle can account better for the data, while holding all
other elements of the model constant. Although IB and RKK+ are defined over the same communication model,
there are two differences in the way these models treat the data: (1) RKK+ only considers major terms while IB
considers the full set of naming responses, and (2) RKK+ evaluates each language against an optimal system with the
same complexity, whereas in the IB model each language is evaluated against an optimal system at βl which may have
a different complexity than that of the language. We controlled for these differences by considering two variants of
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the IB model that match how RKK+ treats the data. We show here that the results in both cases are similar to our
main evaluation, which suggests that these two differences are mainly technical and do not impact our conclusions.

We evaluate RKK+ in the same way we evaluate IB. Namely, we are interested in (A) whether color naming
systems across languages are near-optimally efficient according to RKK+; and (B) how well a theoretically optimal
RKK+ encoder for a given Kl can explain the structure of the color naming distribution q+

l in languages with Kl

major color terms. We use the same quantitative measures for evaluating IB and RKK+, namely εl, gNID and NID,
where εl is defined with respect to the objective in each model. Although there is no tradeoff parameter in RKK+,
the definition of εl coincides with the definition of εl in IB, because in RKK+ the complexity term cancels out. Recall
that for IB we defined

εl = 1
βl

(
Fβl [ql]−F∗βl

)
= 1
βl

(
Iql(W ;M)− Iqβl (W ;M)

)
−
(
Iql(W ;U)− Iqβl (W ;U)

)
. [S23]

From Eq. (5) we get that
εl = 1

βl

(
Iql(W ;M)− Iqβl (W ;M)

)
+
(
D[ql]−D[qβl ]

)
. [S24]

If ql and qβl have the same complexity then we get that εl = D[ql]−D[qβl ]. In RKK+ we have εl = D[q+
l ]−D[qKl ],

where qKl is an optimal RKK+ encoder for Kl.

5.1. IB with constrained complexity. We considered a variant of the IB model in which βl is determined such that
the complexity at βl matches the language’s complexity (IB-C). Formally, this means that in IB-C βl is selected such
that Iql(W ;M) = Iqβl (W ;M) and therefore εl = D[ql]−D[qβl ]. Table S2 shows the results for IB-C, together with
the results for IB and RKK+ that are reported in main text (Table 1). The differences between IB and IB-C are not
substantial, both for the LI source and for the uniform source. Therefore, our conclusions hold even for IB-C.

Table S2. Quantitative evaluation via fivefold cross-validation (including IB-C)

Source Model εl gNID NID βl

LI
IB 0.18 (±0.07) 0.18 (±0.10) 0.31 (±0.07) 1.03 (±0.01)

IB-C 0.18 (±0.07) 0.21 (±0.08) 0.31 (±0.08) 1.04 (±0.02)
RKK+ 0.70 (±0.23) 0.47 (±0.10) 0.32 (±0.10)

U
IB 0.24 (±0.09) 0.39 (±0.12) 0.56 (±0.07) 1.06 (±0.01)

IB-C 0.24 (±0.09) 0.40 (±0.10) 0.56 (±0.08) 1.07 (±0.02)
RKK+ 0.95 (±0.22) 0.65 (±0.08) 0.50 (±0.10)

Averages over left-out languages ±1 SD for the least informative (LI) and uniform (U) source distributions. Lower values of εl, gNID and NID are better.

5.2. IB for major color terms. Applying RKK+ to both major and minor terms can only increase the gap between
the performance of RKK+ and IB. This is because in some languages there are many low frequency terms which
do not much affect the partition of color space, however the optimal RKK+ encoders are very much affected by K.
IB is more robust to low frequency terms, because the informational complexity in IB takes this into account by
considering the frequency of each term. Therefore, we considered a variant of IB and a variant of IB-C in which they
are applied to the color naming distributions restricted to major terms, i.e., to q+

l instead of ql. Table S3 shows that
the results in this case are not substantially different from the results in Table S2, which correspond to our main
evaluation. Therefore, our conclusions hold whether or not the data are restricted to major color terms.

Table S3. Quantitative evaluation via fivefold cross-validation (based only on major color terms)

Source Model εl gNID NID βl

LI
IB 0.14 (±0.06) 0.20 (±0.11) 0.31 (±0.07) 1.03 (±0.01)

IB-C 0.14 (±0.06) 0.20 (±0.09) 0.31 (±0.08) 1.04 (±0.02)
RKK+ 0.70 (±0.23) 0.47 (±0.10) 0.32 (±0.10)

U
IB 0.19 (±0.07) 0.42 (±0.12) 0.57 (±0.07) 1.06 (±0.01)

IB-C 0.19 (±0.07) 0.40 (±0.10) 0.56 (±0.08) 1.07 (±0.02)
RKK+ 0.95 (±0.22) 0.65 (±0.08) 0.50 (±0.10)

Averages over left-out languages ±1 SD for the least informative (LI) and uniform (U) source distributions. Lower values of εl, gNID and NID are better.
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6. Foundational assumptions
In this section we examine the foundational assumptions of our communication model more closely, and discuss the
robustness of our results to these assumptions.

6.1. Choice of color space. Our model is based on the assumption that colors are represented in CIELAB space. To
test the robustness of our results to this assumption, we repeated our full analysis with colors that are represented
in the CIELUV color space (similarly to (14)) instead of CIELAB. Apart from this, all the other assumptions and
methods were kept fixed. Table S4 shows quantitatively that this analysis yields similar results as the main analysis
which is based on the CIELAB assumption. In particular, in both cases IB with the LI source provides the best
account of the data. This conclusion is also supported by the qualitative results shown in Fig.S4 and in Fig.S5A,
which are very similar to the corresponding results based on the CIELAB space. The main difference appears to be
in the bifurcation diagram (Fig.S5B), where a red category appears much earlier compared to the results based on
CIELAB.

Table S4. Quantitative evaluation via fivefold cross-validation (based on CIELUV)

Source Model εl gNID NID βl

LI
IB 0.14 (±0.06) 0.19 (±0.10) 0.30 (±0.09) 1.02 (±0.01)

RKK+ 0.71 (±0.23) 0.45 (±0.10) 0.29 (±0.10)

U
IB 0.19 (±0.08) 0.36 (±0.12) 0.54 (±0.11) 1.03 (±0.01)

RKK+ 0.97 (±0.24) 0.66 (±0.07) 0.51 (±0.09)

Averages over left-out languages ±1 SD for the least informative (LI) and uniform (U) source distributions. Lower values of εl, gNID and NID are better.
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for CIELUV instead of CIELAB.
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Fig. S5. CIELUV space. Information plane (A) and bifurcation diagram (B) for the full LI source. These figures are similar to Fig.3 and Fig.5 in main text,
but they are based on the results for CIELUV instead of CIELAB.

6.2. Category effects and biological constraints. By grounding our model in a presumed universal perceptual color
space such as CIELAB, we have implicitly assumed that this underlying representation is not affected by language.
However, it is known that in fact there are lexical effects on the perceived similarity of colors (e.g. 15). While distances
between colors in CIELAB may have been influenced to some extent by such category effects, we believe it is unlikely
that this has introduced a substantial bias to our model. One reason for this belief is that our model is able to account
for wide cross-language variation in color naming based on the same underlying perceptual space for all languages.
Another reason is that category effects on color memory (e.g. 16, 17) have themselves been accounted for by assuming
the same universal perceptual space, CIELAB, combined with knowledge of language-specific categories (18). These
outcomes, which are consistent with a universal perceptual space, seem unlikely given a perceptual space that is
instead strongly biased toward lexical categorization in one language, such as English.

It has recently been shown that pre-linguistic infants exhibit categorical distinctions that resemble common
patterns in the WCS data (14), and this finding has been taken to suggest a pre-linguistic biological basis for color
categorization. That conclusion is broadly consistent with our assumption of a universal color space, although
our analysis is based solely on data from adults, and we do not attempt to directly engage the question of color
categorization in infants.

6.3. Perceptual uncertainty. The color meaning space (M) that we assumed has a free parameter, σ2, that determines
the speaker’s level of perceptual uncertainty. We set σ2 = 64 based on a result reported in (19) which suggested that
this value corresponds to a distance over which two colors can be comfortably distinguished. To further justify this
setting, we evaluated our IB model with a higher (σ2 = 500) and lower (σ2 = 36) level of perceptual uncertainty. The
higher value, σ2 = 500, corresponds to a level of perceptual uncertainty that has been used in previous studies (e.g.
2, 20). Table S5 shows the quantitative results for our IB model with different levels of perceptual uncertainty, and
with respect to the full LI source. It can be seen that under higher uncertainty, the model is slightly worse on all
three measures. Under lower uncertainty the model is slightly better in terms of εl but slightly worse in terms of
gNID. This suggests that the value of σ2 that we used is in a reasonable region; however, slightly lower values could
perhaps improve the model. This remains a question for future work.

Table S5. Evaluation of IB with different levels of perceptual uncertainty.

σ2 εl gNID NID βl

Lower perceptual uncertainty 36 0.13 (±0.06) 0.23 (±0.11) 0.31 (±0.08) 1.01 (±0.01)
Baseline (main model) 64 0.18 (±0.07) 0.18 (±0.1) 0.31 (±0.07) 1.03 (±0.01)
Higher perceptual uncertainty 500 0.26 (±0.06) 0.31 (±0.12) 0.41 (±0.08) 1.77 (±0.20)

Numbers correspond to averages over languages ±1 SD. Lower values are better for εl, gNID and NID.

6.4. Validity of the WCS protocol. In the WCS protocol, field workers were instructed to encourage participants to
provide short color terms. In practice, these instructions were not applied equally across languages, and in some
languages this biased the free naming task towards frequently used terms. This raises a concern about the quality of
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the WCS data and questions results based on these data. Gibson et al. (21) addressed this issue by comparing color
naming data they collected in a free naming task and in a fixed naming task, and showing that their results were
robust to these two conditions. To assure that our results were also not influenced by this issue, we applied a similar
approach to our analysis.

Specifically, we considered the English color naming data that were collected by Lindsey and Brown (LB, 22) in a
free naming task. LB used an improved experimental protocol for this task, and therefore the quality of their data is
irrefutable. We also considered a modified version of these data which is based only on major terms (MT data), as
described in section 4.1. Fig.S6D shows that the complexity and accuracy values evaluated from the LB data and
the MT data are very similar. In addition, Fig.S6A-Fig.S6C show that the naming distribution estimated from the
LB data is fairly similar to the naming distribution estimated from the MT data, and that the IB predictions are
also similar in both cases. This suggests that our information-theoretic analysis is robust to restricting the naming
responses to major terms, and thus the WCS data can be considered reliable in our setting.
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Fig. S6. English color naming data. Mode maps (A), contour plots (B) and naming probabilities along row F of the WCS palette (C), as in Fig.4. Data
rows correspond to the English color naming distribution estimated from the LB data (left), which considers all color terms, and from the modified MT data
(right), which was restricted to major color terms. D. Complexity and accuracy evaluated based on the LB data the modified MT data.

7. Alternative source distributions
In this section we examine two alternatives to the LI source – the uniform distribution, which we used as a baseline
for evaluation, and another approach based on image statistics.

7.1. Uniform distribution. The quantitative results for the uniform source are reported in the main text. We complete
this picture by presenting Fig.S7A, Fig.S7B and Fig.S8, which are analogous to Fig.3, Fig.5 and Fig.4 in the main
text, but were evaluated for the uniform source. In this case, the languages in our data also lie near the theoretical
limit (Fig.S7), although not as close as they do with the LI source (this can be seen by comparing εl for IB under the
uniform and LI source in Table 1). In addition, although both IB and RKK+ capture some of the structure in the
data even with the uniform source (Fig.S8), this fit does not look as good as the fit based on the LI source (Fig.4 and
section 10). This is consistent with Table 1, which quantitatively shows that the LI source improves the similarity
between each model and the data.

Note that since the uniform source does not take into account communicative needs, the IB model with this source
only reflects properties of the perceptual CIELAB space that are extracted by IB. The bifurcation diagram (Fig.S7B)
in this case reveals a similar yellow discrepancy as observed for the LI source, in which a yellow category emerges at
the earliest stage. This suggests that the yellow discrepancy is directly related to the irregular distribution of stimulus
colors in CIELAB space.
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Fig. S7. Uniform source. Information plane (A) and bifurcation diagram (B) evaluated for the uniform source. For more details see captions of Fig.3 and
Fig.5 in main text.
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Fig. S8. Uniform source. Mode maps (A), contour plots (B) and naming probabilities along row F of the WCS palette (C), for the color naming
distributions (data) and for the IB and RKK+ models. These plots are similar to Fig.4 in main text, where the only difference is that they were evaluated
with respect to the uniform source.
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7.2. Salience-weighted distribution. Another possible approach for estimating the source distribution is based on the
frequencies of colors in natural images. We used the color salience data of Gibson et al. (21), in which the salience of
a color is defined by the frequency with which it appears in objects in a large set of images, relative to its frequency
either in objects or in backgrounds, under the assumption that foreground objects are more likely to be spoken about
than backgrounds are. Gibson et al. estimated the salience of 80 out of the 320 chromatic chips in the WCS palette,
and obtained a salience-weighted (SW) prior by taking the probability of each chip to be proportional to its salience.

In order to apply the SW approach to our setting, we first constructed a salience function over CIELAB space by
interpolating Gibson et al.’s salience data. We used RBF interpolation with basis functions φ(x− xi) =

√
‖x−xi‖2

2σ2 + 1
and σ2 = 64 as in our main analysis. Based on this interpolated function, we estimated the salience of all 330 WCS
chips and constructed a SW prior over them (see Fig.S9). This prior corresponds to a SW source.

A

B

C

D

E

F

G

H

I

J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

10�3

Fig. S9. The estimated salience-weighted (SW) prior over the 330 WCS chips. This prior was interpolated from the salience data of Gibson et al. (21).

We repeated our analysis exactly as described in the main text, but this time with the SW source. Our results
show that in this case as well, naturally occurring color naming systems lie near the theoretical limit (Fig.S10A), and
that IB achieves better scores than RKK+ (Table S6). Therefore, these results appear to be robust across the three
reasonable source distribution we considered.

A comparison of Table S6 and Table 1 shows that the quantitative results with the SW source are similar to the
results with the uniform source, and not as good as the results with the LI source. This can also be seen qualitatively
by looking at Fig.S11 and Fig.S10B, which were evaluated for the SW source. Note that the effect of the SW source on
the performance of the model is not specific to the IB principle — both IB and RKK+ do not fit the data well when
evaluated with the SW source compared to the LI source or even to the uniform source. One possible explanation
is that the SW source is strongly biased towards warm (reds/yellows) colors and does not weigh achromatic colors
(in particular black and white) properly. This can clearly be seen in Fig.S9, and in Gibson et al.’s salience data
before our interpolation. Although Gibson et al. argue that warm colors are more useful for communication than
cool colors, and in that sense the SW source make sense, it seems unlikely that dark/light colors would have the low
communicative need assigned to them by the SW prior.

Table S6. Quantitative evaluation (SW source)

Source Model εl gNID NID βl

SW
IB 0.24 (±0.09) 0.40 (±0.14) 0.54 (±0.12) 1.05 (±0.02)

RKK+ 0.96 (±0.22) 0.65 (±0.08) 0.51 (±0.10)

Averages over left-out languages ±1 SD. Lower values of εl, gNID and NID are better.
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Fig. S10. SW source. Information plane (A) and bifurcation diagram (B) evaluated for the SW source. For more details see captions of Fig.3 and Fig.5 in
the main text.
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Fig. S11. SW source. Mode maps (A), contour plots (B) and naming probabilities along row F of the WCS palette (C), for the color naming distributions
(data) and for the IB and RKK+ models. These plots are similar to Fig.4 in main text, where the only difference is that they were evaluated with respect to
the SW source.
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8. Hypothetical color naming systems
Is it a trivial result that naturally occurring color naming systems lie near the IB curve? Perhaps any ’reasonable-
seeming’ color naming system would lie near the curve, whether or not it is similar to naming systems found in the
world’s languages. Randomly generated color naming systems will typically lie close to the origin in the information
plane. Such systems are non-informative and are thus not useful for color categorization. Therefore, in order to show
that it is not trivial that naturally occurring color naming systems lie near the IB curve (and far from the origin), we
considered two types of hypothetical color naming systems that maintain some informative structure about color
space.

8.1. Rotation analysis. Following (20), we constructed a control set of 39 hypothetical variants for each language
which were obtained by rotating its color naming distribution in the hue dimension across the columns of the WCS
palette. Examples of a few hypothetical variants of Culina are shown in Fig.S12. r = 0 corresponds to the actual
language, r = 2 corresponds to a shift of two columns to the right, and r = −2 corresponds to a shift of two columns
to the left.

If languages are shaped by pressure for information-theoretic efficiency as defined by IB, we would expect that
naturally occurring color naming systems would be more efficient than their hypothetical variants. To test this, for
each rotated color naming system, ql,r, we evaluated the deviation from optimality, or efficiency loss, in the same way
we evaluated εl for the actual language, i.e. εl,r = minβ 1

β (F [ql,r]−F∗β). We compared the efficiency of the language
and the efficiency of its variants by considering εl,r − εl (∆ efficiency loss) for IB with the full LI source. Fig.S13
shows that 93% of the languages are more efficient than all of their hypothetical variants. The remaining 7% are
more efficient than most of their variants, and the preferred rotation is attained at a small |r|.

However, one could argue that these results are an outcome of the LI source, which was estimated with respect to
the unrotated color naming systems. We therefore repeated this analysis with the uniform source. Fig.S14) shows
that the results in this case are similar. This suggests that the actual languages are indeed more efficient than their
hypothetical variants. The advantage of the actual languages can be explained by their alignment with the irregular
structure of CIELAB space (20), which influences the accuracy of communication in the IB model. We also repeated
this rotation analysis for colors that are represented in CIELUV space, and obtained similar results.

r = 5

F1 F20 F40

0

1

r = 2

F1 F20 F40

0

1

r = 0

F1 F20 F40

0

1

r = −2

F1 F20 F40

0

1

r = −5

F1 F20 F40

0

1

Fig. S12. Rotation example. Hypothetical variants for Culina obtained by rotating its color naming distribution in the hue dimension across the columns
of the WCS palette. r = 0 corresponds to the actual language, r = 2 corresponds to a shift of two columns to the right, and r = −2 corresponds to a
shift of two columns to the left. Colors correspond to the color centroid of each category, and columns correspond to mode maps (left), contour plots of
the naming distribution (middle) and conditional probabilities along row F of the WCS palette (right).
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Fig. S13. Rotation analysis for the full LI source. A. Histogram of the most efficient rotation across languages. Rotation 0 corresponds to the actual
language, and it is the most efficient for 93% of the languages in our data. B. Differences between the efficiency loss of the rotated language and the
actual language, ∆ efficiency loss = εl,r − εl. Lower values are better. Blue curve is the average across languages, and the colored region corresponds
to ±1 SD across languages.
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Fig. S14. Rotation analysis for the uniform source. A. Histogram of the most efficient rotation across languages. Rotation 0 corresponds to the actual
language, and it is the most efficient for 98% of the languages in our data. B. Differences between the efficiency loss of the rotated language and the
actual language, ∆ efficiency loss = εl,r − εl. Lower values are better. Blue curve is the average across languages, and the colored region corresponds
to ±1 SD across languages.

8.2. Structured control set based on random Gaussians. We considered another set of structured hypothetical
systems in which the naming distribution is defined by random Gaussians over CIELAB space. We constructed
a hypothetical system with K categories by (1) randomly selecting K chips cw as representatives for categories
w = 1 . . . ,K; (2) assigning to each category a random covariance matrix Σw; and (3) defining the color naming
distribution by

q(w|mc) ∝ exp
(
−1

2(c− cw)>Σ−1
w (c− cw)

)
. [S25]

Σw induces a random transformation of CIELAB space and its eigenvalues are exponentially distributed with mean
σ2 = 64, which matches the level of perceptual uncertainty we used for constructing the color meaning space. We
generated these random matrices as follows: a 3×3 diagonal matrix D was generated by sampling Dii ∼ Exp( 1

σ2−1 )+1,
and a 3× 3 matrix A was generated by sampling uniformly Aij ∈ [0, 1]. The singular value decomposition of A>A
was evaluated, i.e. A>A = UΛV >. Finally, Σw = UDV >.

We constructed these hypothetical systems with K = 3, . . . , 20. For each K we sampled 100 systems, yielding
a total of 1,800 hypothetical systems (see Fig.S15 for a few examples). We evaluated these systems with the IB

18 of 58 Zaslavsky et al.
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model based on the full LI source (εl = 0.33± 0.1, gNID = 0.39± 0.16, NID = 0.44± 0.13) and the uniform source
(εl = 0.36± 0.08, gNID = 0.47± 0.15 ,NID = 0.5± 0.13). In both cases, these hypothetical systems are less efficient
on average than the actual languages we considered.

K = 3 K = 4 K = 5

K = 6 K = 7 K = 8

Fig. S15. Examples of hypothetical color naming systems based on K random Gaussians in CIELAB space.

9. Sensitivity analysis
In this section we test the sensitivity of our results to small errors in the structure of the meaning space,M, that we
assumed. To do so, we injected a small perturbation to each mc and re-evaluated IB and RKK+ with the full LI
source. We injected the perturbation by first drawing i.i.d. Gaussian variables Zc,u ∼ N (0, 0.01), and defining the
perturbed model by m′c(u) ∝ mc(u)eZc,u . The results, summarized in table S7, are almost identical to the results
without perturbation, which suggests that our analysis is robust to small amounts of noise in the perceptual model.

Table S7. Quantitative evaluation with the perturbed meaning space

Source Model εl gNID NID βl

LI
IB 0.18 (±0.07) 0.18 (±0.10) 0.31 (±0.07) 1.03 (±0.01)

IB-C 0.18 (±0.07) 0.21 (±0.08) 0.30 (±0.08) 1.04 (±0.02)
RKK+ 0.70 (±0.23) 0.46 (±0.10) 0.31 (±0.10)

Numbers correspond to averages over languages ±1 SD. Lower values are better for ε, gNID and NID.

Zaslavsky et al. 19 of 58
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Abstract

It has recently been hypothesized that semantic systems evolve under pressure to main-

tain efficient coding schemes. However, thus far, support for this hypothesis has been based

largely on synchronic cross-language comparison, rather than on diachronic data. Here, we

directly test the predictions of this efficient coding hypothesis in the domain of color nam-

ing, by analyzing recent diachronic data for a single language, Nafaanra. We show that

color naming in Nafaanra has changed over the past four decades while remaining near-

optimally efficient, and that this outcome would be unlikely under an alternative baseline

process that does not incorporate pressure for efficiency. To our knowledge, this finding

provides the first direct evidence in support of the view that color naming evolves under

pressure for efficiency. The principle we invoke is general and has been applied to seman-

tic domains other than color, thus it is possible that pressure for efficiency may shape the

evolution of the lexicon more broadly.

1 Introduction

What forces shape the evolution of semantic systems? This general question has often been
addressed in the specific case of color naming. Many theories hold that languages acquire
new color terms with time, resulting in finer-grained color naming systems (e.g., Berlin and
Kay, 1969; Kay and Maffi, 1999; MacLaury, 1997; Levinson, 2000). More recently, it has
also been claimed (e.g., Lindsey et al., 2015; Regier et al., 2015; Gibson et al., 2017) that this
historical evolutionary process, and color naming more generally, are shaped by the need for
efficient communication — that is, the need to communicate accurately, with a simple lexi-
con. In particular, Zaslavsky et al. (2018) grounded this notion of efficiency in an independent

Q noga.zaslavsky@mail.huji.ac.il
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information-theoretic principle, the Information Bottleneck (IB: Tishby et al., 1999). IB can be
formulated within rate–distortion theory (Shannon, 1948, 1959), the branch of information the-
ory that addressed the problem of efficient coding under limited resources, also known as lossy
data compression (Cover and Thomas, 1991). They showed that IB explains much of the ob-
served cross-language variation in color naming, and hypothesized that languages evolve under
pressure to remain near the IB theoretical limit of efficiency via an annealing-like process.

However, this hypothesis, as well as most theories concerning the evolution of color nam-
ing, has been supported by synchronic cross-language comparisons, rather than by direct evi-
dence from diachronic data (but e.g. Biggam (2012) considered historical texts and Kay (1975)
considered informant age as a proxy for change over time). In this work, we test directly the
quantitative evolutionary predictions derived from the IB principle using diachronic color nam-
ing data. We do so by considering data for a single language, Nafaanra, that was collected
first in 1978 as part of the World Color Survey (WCS: Kay et al., 2009), and again in 2018
by Garvin (in preparation). We show that color naming in Nafaanra has changed over the past
four decades while remaining near the theoretical limit of efficiency, as predicted by IB, and that
this result is unlikely to be explained by a baseline evolutionary process that is not influenced
by pressure for efficiency. To our knowledge, this is the first finding that directly supports the
idea that color naming, and possibly semantic systems more generally, evolve under pressure
for efficiency.

2 Theoretical framework and predictions

We begin by reviewing Zaslavsky et al.’s (2018) IB color naming model and efficient coding
hypothesis, on which the present study builds. Although this framework is presented here in the
case of color naming, it is not specific to color, and can be applied to other semantic domains.

2.1 IB color naming model

The IB color naming model is based on a basic communication setting (Figure 1A) in which a
speaker and a listener wish to communicate about colors. For simplicity, we consider only the
set of colors shown in Figure 1B. The speaker obtains a mental color representation, M , drawn
from a prior distribution p(m). This prior was estimated by Zaslavsky et al. (2018) in a data-
driven approach (see Zaslavsky et al., 2019a, for a systematic evaluation of several priors).
The speaker’s mental representations are grounded in color perception, following Regier et al.
(2007, 2015), by assuming each color is represented by a Gaussian distribution over a standard
perceptual color space (Figure 1C). The speaker then communicates their color representation
by encoding it into a word W , using a stochastic encoder q(w|m). The listener receives W
and infers the speaker’s representation by constructing another color representation, M̂ . An
optimal Bayesian listener, as assumed here, infers from a given word, w, the representation
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complexity

accuracy
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Figure 1. Color communication model (adapted from Zaslavsky et al., 2018). A. The speaker mentally
represents a color as a Gaussian distribution, M , over a standard perceptual color space (shown in C),
and communicates this representation by producing a word W . The listener receives W and infers the
speaker’s representation by reconstructing M̂ . B. The WCS color naming grid, which consists of 320
chromatic color chips and 10 achromatic color chips. C. Colors are represented in the 3-dimensional
CIELAB space. Lightness is represented by the L∗ dimension. Hue and saturation are represented in
polar coordinates in the (a∗, b∗) plane.

m̂w =
∑

m q(m|w)m, where q(m|w) is obtained by applying Bayes’ rule with respect to the
speaker’s encoder and prior.

Zaslavsky et al. (2018) argued that human semantic systems, formulated as encoders, are
pressured to optimize the IB tradeoff between the complexity and accuracy of the lexicon. IB
can be formulated as a type of rate–distortion problem, where the messages that need to be
compressed are defined by distributions over a set of relevant features. In our case, these mes-
sages are the mental representations described above, and a feature vector U is a points in the
perceptual CIELAB color space (Figure 1C). According to IB, complexity roughly corresponds
to the number of bits required for communication, and it is measured by the mutual information
between M and W ,

Iq(M ;W ) =
∑

m,w

p(m)q(w|m) log
q(w|m)

q(w)
. (1)

Accuracy corresponds to the similarity between the speaker’s and listener’s representations,
and it is measured by Iq(W ;U). Maximizing this term amounts to minimizing the expected
Kullback–Leibler (KL) divergence between the two representations,

Eq [D[m‖m̂w]] = E
m∼p(m)
w∼q(w|m)

[∑

u

m(u) log
m(u)

m̂w(u)

]
. (2)

Thus, high accuracy implies that the listener’s inferred representation is similar to the speaker’s
representation. Achieving high accuracy requires a complex lexicon, while reducing complex-
ity may result in accuracy loss. Optimal systems, according to the IB principle, minimize
complexity while maximizing accuracy, for a tradeoff, β ≥ 0, between these two competing
objectives. Formally, an optimal encoder given β attains the minimum of the IB objective
function,

Fβ[q] = Iq(M ;W )− βIq(W ;U) , (3)
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across all possible encoders. Let F∗β be the minimal value of this objective given β.

2.2 The efficient coding hypothesis

The theoretical limit of efficiency is determined by the set of encoders that attain F∗β for differ-
ent values of β. These encoders, denoted by qβ(w|m), induce ideal color naming systems in
the sense that they attain the maximal achievable accuracy given their complexity. Zaslavsky
et al. (2018) evaluated this theoretical limit for color naming, shown in Figure 2. At the origin
of the IB curve (black), the solution corresponds to β ≤ 1, and it gives a minimally complex
yet non-informative system, that can be implemented using a single word. As β increases from
1 to ∞, the ideal systems evolve by traveling on the IB curve, and becoming more complex
and more accurate. Along this continuous trajectory, the systems undergo a sequence of struc-
tural phase transitions at critical values of β, in which new categories emerge. Zaslavsky et al.
(2018) showed that (1) the actual color naming systems in the WCS+ dataset1 lie near the the-
oretical limit; (2) the IB systems explain much of the observed cross-language variation, where
β is the only language-dependent variable; and (3) the annealing-like process by which the IB
systems evolve synthesizes the discrete aspects of Berlin and Kay’s (1969) evolutionary se-
quence and continuous aspects of other accounts of color category evolution (MacLaury, 1997;
Lyons, 1995; Levinson, 2000). On that basis, they hypothesized that languages evolve under
pressure to remain near the theoretical limit. We refer to this hypothesis as the efficient coding

hypothesis for semantic systems.
On this view, language change is driven to a large extent by shifts in the tradeoff parameter

β. This parameter reflects language-specific factors, which may change over time, and deter-
mines the capacity resources (i.e., average number of bits) allocated for communication about
the domain. β is closely related to Kemp et al.’s (2018) notion of domain-level need, although
that notion refers to a probability distribution over semantic domains, rather than to the allo-
cation of capacity resources. In both cases, however, specific social or cultural factors are not
explicitly modeled, even though it is likely that such factors influence language change (e.g.
Berlin and Kay, 1969). Explicitly taking into account such factors requires an extension of the
current framework, which we leave for future work.

2.3 Quantitative diachronic predictions

The goal of this work is to directly test the efficient coding hypothesis by evaluating its predic-
tions on diachronic color naming data, rather than synchronic data. Suppose we have access
to the naming system of a given language, l, at a given point in time, t. Denote this system
by q(t)l (w|m). The evolutionary trajectory of l is defined by the trajectory of q(t)l (w|m) over
time. In practice, we may only obtain samples from this trajectory at discrete time points,

1The WCS+ dataset consist of the WCS data and color naming data from English (Lindsey and Brown, 2014).
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Figure 2. Information plane. The theoretical limit of efficiency (IB curve, black) is defined by the
complexity–accuracy pairs of the optimal IB systems for different values of β (from Zaslavsky et al.,
2018). The blue and orange dots show the complexity and accuracy of the Nafaanra system in 1978 and
2018. The light red area below the IB curve shows the area covered by 50 hypothetical trajectories, which
were all initialized near the 1978 system. The red trajectory corresponds to the example in Figure 4B,
and the red dot shows its final location.

T = {t0, . . . , tn}. Given these samples, the diachronic dataset for language l is defined by

Ql(T ) =
{
q
(t)
l (w|m) : t ∈ T

}
. (4)

Zaslavsky et al. (2018) derived two precise predictions for any given naming system, q(t)l (w|m),
which are extended here toQl(T ), while keeping the same quantitative measures for evaluation.

Inefficiency. The first prediction states that languages should be near-optimally efficient in
the IB sense. Notice that Ql(T ) induces a trajectory on the information plane (Figure 2),
defined by the complexity–accuracy pairs of q(t)l (w|m), for all t ∈ T . If the efficient coding
hypothesis is true, then there should be a sequence of tradeoffs, βl(t), such that the time-
dependent inefficiency,

εl(t) = 1
βl(t)

(
Fβl(t)

[
q
(t)
l

]
−F∗βl(t)

)
, (5)

would be small. Notice that εl(t) ∈ [0, H(M)], however in practice, achieving εl(t) = 0

is unlikely. A precise sense of “small” εl(t) can be obtained by comparison to counterfac-
tual outcomes. If for actual languages it holds that εl(t) � H(M), and it is substantially
lower compared to hypothetical systems that are not shaped by pressure for efficiency, then
this would support the hypothesis. In section 3.2 we discuss in detail how this counterfac-
tual data is generated. Finally, since βl(t) is unknown, a natural way to estimate it is by
βl(t) = argminβ {Fβ[q

(t)
l ]−F∗β}, for every language l and time t ∈ T .
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Dissimilarity. The second prediction states that actual naming systems should be similar to
their corresponding IB systems. This implies that the actual trajectory, Ql(T ), is expected
to be similar to the corresponding idealized trajectory along the IB curve, i.e., Q∗l (T ) =

{qβl(t)(w|m) : t ∈ T }. The dissimilarity between any two naming systems is measured by
the generalized Normalized Information Distance (gNID: Zaslavsky et al., 2018). To define
gNID, consider the following process: Suppose that a speaker of language l1 and a speaker of
language l2 obtain a representation M ∼ p(m). l1 and l2 could either be actual languages or
hypothetical ones. In order to communicate M , the speaker of l1 produces W1 ∼ q1(w|m),
and the speaker of l2 produces W2 ∼ q2(w|m). The cross-language information is defined by
I(W1,W2), and the within-language information is defined by I(Wi,W

′
i ), where W ′

i is pro-
duced by another speaker of li, independently given M . gNID is based on the ratio between
these informational terms, and it is defined by

gNID [q1, q2] = 1− I(W1,W2)

max {I(W1,W ′
1), I(W2,W ′

2)}
. (6)

Thus, two naming systems are similar (low gNID) if they induce high cross-language infor-
mation, normalized by their within-language information. We define the gNID between two
trajectories by

gNID [Q1(T ), Q2(T )] =
1

|T |
∑

t∈T
gNID

[
q
(t)
1 , q

(t)
2

]
. (7)

If gNID [Ql(T ), Q∗l (T )] is smaller than gNID [Ql(T ), Qh(T )], where Qh(T ) is a reasonable
hypothetical trajectory not influenced by pressure for efficiency, in addition to Ql(T ) being
highly efficient, then that would provide converging evidence in support of the efficient coding
hypothesis.

3 Diachronic data

In order to directly test the diachronic predictions discussed in section 2.3, we consider di-
achronic color naming data that exists for a single language, Nafaanra, spoken in West Ghana.
We also consider a set of hypothetical color naming systems for our counterfactual analysis.
We next describe our actual and counterfactual datasets.

3.1 Color naming in Nafaanra

Color naming data for Nafaanra was initially collected in 1978, as part of the WCS. Partici-
pants in the WCS experiment were asked to provide names for all 330 color chips in the WCS
grid (Figure 1B). The 1978 Nafaanra system, q′78l (w|m), was estimated by the proportion of
participants who used the term w in reference to cm, the chip associated with m (recall that
each color is mapped to a unique mental representation). This system is shown in Figure 3A.
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It was analyzed by Zaslavsky et al. (2018), together with all languages in the WCS+ dataset,
and was shown to be near-optimally efficient (Figure 2, blue dot). Nafaanra data were collected
again in 2018 by Garvin (in preparation), following the same WCS data collection protocol.
We estimated the 2018 Nafaanra system, q′18l (w|m), the same way the 1978 system was es-
timated. This system is shown in Figure 3B. Clearly, color naming in Nafaanra has changed
substantially over the past four decades, by adding more color terms and becoming more fine-
grained.2 However, this observation alone does not indicate whether the system has changed in
a way that is consistent with the diachronic predictions of the efficient coding hypothesis.

A. 1978 system B. 2018 system

Figure 3. Color naming in Nafaanra as estimated from the 1978 and 2018 data. Upper panel (mode
maps): Each chip in the WCS grid is colored according to its modal category. Colors correspond to the
center of mass of the category. Lower panel: Contour plots of the distribution of color names across
speakers. The frequency of use of each term is shown with the color of its category. Dashed lines
correspond to agreement levels of 40%-45%, and solid lines correspond to agreement levels above 50%.

3.2 Counterfactual data

We generated two types of counterfactual datasets, for comparison with the actual Nafaanra
data. First, we consider a standard approach for generating hypothetical variants of existing
color naming systems (Regier et al., 2007). This approach is very useful for evaluating syn-
chronic data, but not for evaluating diachronic data. Thus, we propose a method for generating
hypothetical future trajectories of a given initial system — in this case, the 1978 Nafaanra
system — which could then be compared with actual diachronic data.

Rotations. Regier et al. (2007) generated a set of hypothetical variants of actual color naming
systems, by rotating each system along the hue dimension (columns) of the WCS grid. This
method produces a set of 39 hypothetical system for each language, that preserve a similar
category structure as the actual system. Therefore, they are more reasonable than randomly
generated systems, which typically would not have a continuous category structure. Zaslavsky
et al. (2018) applied this method to all 111 languages in the WCS+ dataset, including the 1978

2See Garvin (in preparation) for a detailed description of each color term and its origin.

52



2018 system1978 system

r = 10

r = 5

r = 0

r = �5

r = �10

iteration 1

iteration 100

iteration 700

iteration 780

iteration 1500

A. Rotations B. Hypothetical future

A. 1978 system B. 2018 system

Figure 4. Counterfactual data. Contour plots of (A) rotated variants of the 2018 system, and (B) sys-
tems along one hypothetical trajectory. A. r = 0 corresponds to the actual system (same as Figure 3B).
r > 0 corresponds to a shift of r columns to the right, and r < 0 corresponds to a shift of |r| columns to
the left. B. The initial system was fitted to the 1978 system. It evolves by simulating a stochastic process
that allows new categories to emerge, drift, and occasionally vanish.

Nafaanra system, and showed that these languages are more efficient than their hypothetical
variants, and more similar to the corresponding IB system. It is worth noting that β is fitted
to each hypothetical system separately, in order to consider the best scores these hypothetical
systems can achieve. Here, we apply the same method for constructing a set of hypothetical
variants for the 2018 Nafaanra system (see Figure 4A for examples). While this counterfactual
dataset is suitable for evaluating the efficiency of the 2018 system considered by itself, it is not
suitable for evaluating diachronic data because it is intuitively unlikely that actual color naming
systems evolve over time by rotations.

Hypothetical futures. In order to generate counterfactual diachronic data, we simulate lan-
guage change via a stochastic process that preserves a continuous category structure, with-
out any pressure to maintain efficient coding. To this end, we consider a class of artificial
color naming systems, in which each category w induces a Gaussian distribution, q(c|w) =

N (c;µw,Σw), over CIELAB space. In practice, we discretized these Gaussians by restricting
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them to the WCS grid. Abbott et al. (2016) considered a similar method of estimating color
categories by Gaussian, and on that basis they accounted for focal colors. This suggests that the
class of Gaussian color naming systems contains reasonably structured hypothetical systems.
A system with k categories is defined by k Gaussians, and a k-dimensional probability vector
q(w). Given these parameters, the naming distribution is taken to be q(w|m) ∝ q(cm|w)q(w).
Our stochastic process takes an initial system from this class, and propagates it in time by
allowing its parameters to change gradually.

Before we define the dynamics of this process, our parameterization requires further elab-
oration. First, to ensure that each Σw remains positive semi-definite, we parametrize it by
another matrix, Lw, such that Σw = LwL

>
w . Second, to allow categories to emerge or van-

ish, we assume K = 330 potential categories, and keep a weight vector, πw, for them. Only
categories for which πw is higher than a given threshold η are considered in the lexicon. For
those categories, we define q(w) ∝ π(w). Therefore, η is a hyper-parameter that controls the
tendency to add new categories. At the t-th iteration of the process, the system is defined by
θ(t) = {µ(t)

w , L
(t)
w , π

(t)
w }Kw=1.

Given an initial system, θ(0), the dynamics of the process is defined as follows. At each
iteration t, a potential category wt is chosen at random. First, the weight vector is updated
by randomly selecting whether to add or subtract η from π

(t−1)
wt , and keeping the vector non-

negative and normalized. Formally, the update equations for the weight vector are:

Pt = max{0, π(t−1)
wt

+ ηst} , st ∼ U({−1, 1}) (8)

π(t)
w =

1

1− π(t−1)
wt + Pt

(
δw,wtPt + (1− δw,wt)π

(t−1)
w

)
, ∀w ∈ {1, . . . , K} . (9)

Next, if wt is already in the lexicon, i.e. π(t−1)
wt > η, then with probability 0.5 its parameters are

updated as follows:

µ(t)
wt

=
1

2

(
µ(t−1)
wt

+ ct
)
, ct ∼ qt−1(c|wt) (10)

L(t)
wt

= L(t−1)
wt

+ I + A(t) , A
(t)
i,j ∼ N (0, 1) . (11)

The update rule for µ(t)
wt shifts it in the direction of ct, which on average would be a small shift

because ct is sampled from qt−1(c|wt). The update rule for L(t)
wt adds to it a noise matrix, A(t),

and the identity matrix, I , in order to encourage the category to grow over time.
Finally, it remains to set the initial set of parameters, θ(0), and threshold η. We set θ(0)

such that the corresponding system will approximate the actual 1978 Nafaanra system. For
each category in the 1978 system, we fit a Gaussian with a diagonal covariance matrix, and
take L(0)

w to be its square root. For these categories, we take π(0)
w to be their proportion in the

1978 naming data. For the remaining potential categories, which are not in the lexicon, we
set π(0)

w = 0. For these categories, µ(0)
w is initialized by randomly selecting a chip from the
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WCS grid (with replacement). L(0)
w is initialized by σ(0)

w I + A
(0)
w , where A(0)

w is sampled as in
Eq. 11, and σ(0)

w is drawn uniformly from [1, 5]. We take η = 0.01, for which we observed a
trend of gradual increase in the number of categories, reaching on average k = 23.9 after 1, 500

iterations.
We generated a set of 50 hypothetical trajectories by simulating this process for 1, 500 itera-

tions. Examples of several systems along a trajectory from this sample are shown in Figure 4B.
The initial system, which is the same for all trajectories, is indeed a good approximation of the
1978 system.

4 Results

We begin by analyzing the 2018 system in exactly the same way Zaslavsky et al. (2018) ana-
lyzed the 1978 system. It was already shown that color naming in Nafaanra was near-optimally
efficient in 1978, and that it has changed substantially over the past 40 years. If the efficient
coding hypothesis is true, then the 2018 system is also expected to be near-optimally efficient.
The complexity and accuracy of the 2018 system are shown by the orange dot in Figure 2, and
as expected, it lies near the theoretical limit. This observation is further validated by compar-
ing the 2018 to its set of hypothetical variants. Figure 6C shows that the 2018 system is more
efficient than all of its variants, and also more similar to the nearest optimal system. In this
sense, the 2018 system is locally optimal. These findings alone, however, do not imply that the
system had changed under persistent pressure for efficiency.

To find out whether it is likely that the observed change in Nafaanra was influenced by
efficiency, we compare: (1) the actual trajectory, Ql(T ), estimated from the 1978 and 2018
Nafaanra data; (2) the corresponding idealized IB trajectory, Q∗l (T ); and (3) the set of hypo-
thetical trajectories that the 1978 system could have followed, if it had changed without any
pressure for efficiency. While the initial state of these hypothetical trajectories was fitted to the
1978 system, it is not clear which iteration corresponds to the 2018 system. Therefore, for each
trajectory i and each iteration t, we ask how well Qi

h({0, t}) explains the actual trajectory.
Figure 5 shows that all the hypothetical trajectories diverge away from the curve over time,

and become less efficient than the actual systems. This can also be seen by the light red area
below the IB curve in Figure 2. This area is restricted because we forced the hypothetical
systems to maintain Gaussian categories, which is a relatively good a-priori assumption for a
color naming system. Interestingly, the initial system, which is a Gaussian approximation of
the 1978 system, is more efficient than the actual systems. This suggests that the stochastic
processes we simulated could in principle reach naturally-looking and highly efficient systems.
However, we see that over time it does not tend to stay at such systems, even when initialized
at a highly efficient system. Thus, we conclude that the fact that the 2018 system had remained
near-optimally efficient over time is not a trivial property, because it is unlikely to be explained
by a baseline process that is not pressured to remain near the theoretical limit.
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Figure 5. Inefficiency prediction. Gray curves show the inefficiency, ε(t), of 50 hypothetical trajecto-
ries, as a function of the iteration t. The black curve is the average inefficiency across these trajectories.
εl(1978) and εl(2918) correspond to the inefficiency of the 1978 and 2018 Nafaanra systems, and the
dashed line corresponds to the average inefficiency across the WCS+ languages.

Next, we examine how well the IB trajectory explains the full structure of the actual trajec-
tory. A qualitative comparison of the IB systems predicted for 1978 and 2018 (Figure 6A–B),
and the actual systems (Figure 3), shows that the IB trajectory captures much of the structure
seen in the data, including the observed stochastic category structure and the refinement of the
system over time. However, this comparison also reveals how the actual systems deviate from
the optimal ones: the 1978 does not exhibit the yellow category predicted by the model, and the
2018 exhibits purple and brown categories which are not predicted by the model.3 These dif-
ferences can potentially be explained by social or cultural factors that may influence language
change, such as language contact, which are not taken into account in the model. Nonethe-
less, we argue that the idealized IB trajectory provides more insight about the actual trajectory,
than the hypothetical trajectories. Qualitatively examining the systems along the hypothetical
trajectories (Figure 4B for example), shows that although these systems maintain a reasonable
category structure, over time they become intuitively unnatural and do not resemble the 2018
system (nor any of the WCS+ systems).

This observation is also supported by the quantitative analysis shown in Figure 7. Both
the IB trajectory and the hypothetical trajectories start at a system that is more similar to the
1978 than to the 2018 system. For IB, as β increases, the IB systems along the curve become
more similar to the 2018 system (lower gNID) and less similar to the 1978 system (higher
gNID). The hypothetical trajectories, however, become less similar to the 1978 system but do

3At slightly higher values of β the model does predict brown and purple categories, resulting in a system that
appears intuitively more similar to the 2018 Nafaanra system. An important direction for future work is to improve
the estimation of βl.
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Figure 6. A–B. Contour plots of the IB systems that are predicted for the 1978 and 2918 Nafaanra
systems. C. Rotation analysis for the 2018 Nafaanra system. This system is more efficient (lowest
εl), and more similar to the nearest IB system (lowest gNID) than all of its hypothetical variants (see
Figure 4A for examples).
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Figure 7. Dissimilarity prediction. A. Comparison between the IB systems along the theoretical limit,
and the two Nafaanra systems. Dasshed line corresponds to the gNID between the actual trajectory
Ql(T ), and the IB trajectory, Q∗l (T ), which is defined by the two IB systems at the initial and final
values of β in this plot (these systems are shown in Figure 6A–B). B. Same as (A) for the hypothetical
trajectories. Each curve shows the average across all trajectories.

not become similar to the 2018 system. This holds also for the gNID between the trajectories,
i.e. gNID[Ql(T ), Q∗l (T )] < 〈gNID[Ql(T ), Qi

h({0, t})]〉i for all t, as can be seen by comparing
the dashed and solid black lines in Figure 7. This means that for every iteration t, if we stop
the hypothetical process at that point and evaluate its similarity to the actual trajectory, it would
perform worse compared to the IB trajectory.

Finally, we note that the hypothetical trajectories tend to add new categories over time and
become more refined. This property is predicted by many theories of color category evolu-
tion (e.g., Berlin and Kay, 1969; Kay and Maffi, 1999; MacLaury, 1997; Levinson, 2000).
However, our findings underscore that this alone is not enough for understanding the evolu-
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tion of color naming, because many trajectories could exhibit this property while generating
unnatural color naming systems.

5 Disucssion

In this work we have tested directly the hypothesis that color naming evolves under pressure
to maintain efficient coding. We have done so by examining recent diachronic color naming
data that exists for a single language, Nafaanra. We have shown that color naming in Nafaanra
has changed over the past four decades in a way that is consistent with the predictions of
the efficient coding hypothesis, and that this is not a trivial outcome because the observed
change is unlikely to be explained by a baseline evolutionary process, that is not pressured by
efficiency. To our knowledge, this is the first direct evidence in support of the general idea
that the evolution of color naming, and possibly semantic systems more generally, is shaped by
pressure for efficiency.

While we do not know what was the actual trajectory that the Nafaanra color naming system
has undergone since 1978, our results suggest that the theoretically-motivated evolutionary
trajectory derived from IB may be informative about the actual trajectory. At the same time, we
do not argue that languages evolve by following exactly this idealized trajectory, because there
are additional forces, such as language contact, that are likely to influence language change. An
important direction for future research is to explore how these forces may operate in interaction
with pressure for efficiency. Another important direction for future research is to test the extent
to which our results extend to other languages, and to other semantic domains. The theoretical
framework on which we build is not specific to color, and has been applied to other semantic
domains (Zaslavsky et al., 2019b, and see also Kemp et al. (2018)), suggesting that efficient
coding may be a fundamental principle in the evolution of the lexicon.
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Abstract
It has been argued that semantic categories across languages
reflect pressure for efficient communication. Recently, this
idea has been cast in terms of a general information-theoretic
principle of efficiency, the Information Bottleneck (IB) prin-
ciple, and it has been shown that this principle accounts for
the emergence and evolution of named color categories across
languages, including soft structure and patterns of inconsistent
naming. However, it is not yet clear to what extent this ac-
count generalizes to semantic domains other than color. Here
we show that it generalizes to two qualitatively different se-
mantic domains: names for containers, and for animals. First,
we show that container naming in Dutch and French is near-
optimal in the IB sense, and that IB broadly accounts for soft
categories and inconsistent naming patterns in both languages.
Second, we show that a hierarchy of animal categories derived
from IB captures cross-linguistic tendencies in the growth of
animal taxonomies. Taken together, these findings suggest that
fundamental information-theoretic principles of efficient cod-
ing may shape semantic categories across languages and across
domains.
Keywords: information theory; language evolution; semantic
typology; categories

Introduction
Cross-linguistic studies in several semantic domains, such as
kinship, color, and numeral systems, suggest that word mean-
ings are adapted for efficient communication (see Kemp, Xu,
& Regier, 2018 for a review). However, until recently it had
remained largely unknown to what extent this proposal can
account for soft semantic categories and inconsistent naming,
that could appear to pose a challenge to the notion of effi-
ciency, and how pressure for efficiency may relate to language
evolution. Recently Zaslavsky, Kemp, Regier, and Tishby
(2018; henceforth ZKRT) addressed these open questions by
grounding the notion of efficiency in a general information-
theoretic principle, the Information Bottleneck (IB; Tishby,
Pereira, & Bialek, 1999). ZKRT tested this formal approach
in the domain of color naming and showed that the IB prin-
ciple: (1) accounts to a large extent for cross-language vari-
ation in color naming; (2) provides a theoretical explanation
for why observed patterns of inconsistent naming and soft se-
mantic categories may be efficient; and (3) suggests a possi-
ble evolutionary process that roughly recapitulates Berlin and
Kay’s (1969) discrete implicational hierarchy while also ac-
counting for continuous aspects of color category evolution.

However, it is not yet clear to what extent these results may
generalize to other semantic domains, especially those that
are fundamentally unlike color.

Here we test the generality of this theoretical account by
considering two additional semantic domains: artifacts and
animals. These domains are of particular interest in this con-
text because they are qualitatively different from color, they
have not previously been comprehensively addressed in terms
of efficient communication, and at the same time it is possi-
ble to apply to them the same communication model that has
previously been used to account for color naming.

First, we consider naming patterns for household contain-
ers. This is a semantic domain in which categories are known
to overlap and generate inconsistent naming patterns (Ameel,
Storms, Malt, & Sloman, 2005; Ameel, Malt, Storms, & Ass-
che, 2009). Although it has previously been shown that con-
tainer naming in English, Spanish, and Chinese is efficient
compared to a large set of hypothetical naming systems (Xu,
Regier, & Malt, 2016), that demonstration did not consider
the full probability distribution of names produced by dif-
ferent speakers, did not explicitly contrast monolingual and
bilingual speakers, and was based on a smaller set of stim-
uli than we consider here. In this work we show that the full
container-naming distribution in Dutch and French, including
overlapping and inconsistent naming patterns, across a large
set of stimuli, both in monolinguals and bilinguals, is near-
optimally efficient in the IB sense.

Second, we test the evolutionary account of ZKRT in the
case of animal categories. By analogy with Berlin and Kay’s
implicational hierarchy of color terms, Brown (1984) pro-
posed an implicational hierarchy for the evolution of ani-
mal taxonomies based on cross-language comparison. We
show that aspects of this hierarchy are captured by a sequence
of efficient animal-naming systems along the IB theoretical
limit. Our results also support the view that both perceptual
and functional features shape animal categories across lan-
guages (Malt, 1995; Kemp et al., 2018).

The remainder of this paper proceeds as follows. First, we
review the theoretical framework and formal predictions on
which we build. We then present two studies that apply this
approach to the aforementioned semantic domains.
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Figure 1: Communication model adapted from ZKRT. A
speaker communicates a meaning M by encoding it into a
word W according to a naming distribution q(w|m). This
word is then interpreted by the listener as M̂ . Complexity
is a property of the mapping from meanings to words, and
accuracy is determined by the similarity between M and M̂ .

Theoretical framework and predictions
We consider here the theoretical framework proposed by
ZKRT, which is based on a simplified interaction between
a speaker and a listener (Figure 1), formulated in terms of
Shannon’s (1948) communication model. The speaker com-
municates a meaning m, sampled from p(m), by encoding it
into a wordw, generated from a naming (or encoder) distribu-
tion q(w|m). The listener then tries to reconstruct from w the
speaker’s intended meaning. We denote the reconstruction by
m̂w, and assume it is obtained by a Bayesian listener.1 These
meanings, m and m̂w, are taken to be mental representations
of the environment, defined by distributions over a set U of
relevant features. For example, if communication is about
colors, then U may be grounded in a perceptual color space,
and each color would be mentally represented as a distribu-
tion over this space.

Under these assumptions, efficient communication systems
are those naming distributions that optimize the Information
Bottleneck (IB; Tishby et al., 1999) tradeoff between the
complexity and accuracy of the lexicon. Formally, complex-
ity is measured by the mutual information between meanings
and words, i.e.:

Iq(M ;W ) =
ÿ

m,w

p(m)q(w|m) log q(w|m)
q(w) , (1)

which roughly corresponds to the number of bits used to en-
code meanings into words. Accuracy is inversely related to
the discrepancy between m and m̂w, measured by the ex-
pected Kullback–Leibler (KL) divergence between them:

Eq[D[mÎm̂w]] = E
m≥p(m)
w≥q(w|m)

Cÿ

uœU
m(u) log m(u)

m̂w(u)

D
. (2)

Accuracy is defined by Iq(W ;U) = Eq[D[m̂wÎm0]], where

1The reconstruction of a Bayesian listener with respect to a given
naming distribution is defined by m̂w =

q
m q(m|w)m.
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Figure 2: The black curve is the IB theoretical limit of effi-
ciency for container naming, obtained by varying —. Points
above this curve cannot be achieved. Complexity and accu-
racy tradeoffs in the four naming conditions are near-optimal.

m0 is the prior representation before knowing w, and maxi-
mizing accuracy amounts to minimizing equation (2).2

Achieving maximal accuracy may require a highly com-
plex system, while minimizing complexity will result in a
non-informative system. Efficient systems are thus pressured
to balance these two competing goals by minimizing the IB
objective function,

F— [q] = Iq(M ;W )≠—Iq(W ;U) , (3)

where — Ø 0 controls the efficiency tradeoff. The optimal
systems, q—(w|m), achieve the minimal value of equation (3)
given —, denoted by Fú

— , and evolve as — gradually shifts from
0 to Œ. Along this trajectory they become more fine-grained
and complex, while attaining the maximal achievable accu-
racy for their level of complexity. This set of optimal systems
defines the theoretical limit of efficiency (see Figure 2).

If languages are pressured to be efficient in the IB sense,
then for a given language l with naming system ql(w|m),
two predictions are made. (1) Deviation from optimality,
or inefficiency, should be small. This is measured by Ál =
1
—l

(F—l
[ql]≠Fú

—l
), where —l is estimated such that Ál is min-

imized. (2) The dissimilarity between ql and the correspond-
ing IB system, q—l

, should be small. This is evaluated by a
dissimilarity measure (gNID) proposed by ZKRT. In addition,
ZKRT suggested that languages evolve along a trajectory that
is pressured to remain near the theoretical limit.

These predictions were previously supported by evidence
from the domain of color naming. To apply this approach
to other domains, i.e. to instantiate the general communica-
tion model, two components must be specified: a meaning
space, which is the set of meanings the speaker may commu-
nicate; and a prior, p(m), also referred to as a need distri-
bution (Regier, Kemp, & Kay, 2015), since it determines the
frequency with which each meaning needs to be communi-
cated. In the following sections we present two studies that

2See (Zaslavsky et al., 2018) for detailed explanation.
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Figure 3: A. Two dimensional nMDS embedding and color coding of the containers stimulus set used by White et al. (2017).
Images show a few examples. B. Monolingual naming distributions for Dutch (upper left) and French (lower left), together with
their corresponding IB systems (right column), are visualized over the 2D embedding shown in (A). Each color corresponds to
the color centroid of a container category, w, based on the color map in (A). Colors show category probabilities above 0.4, and
color intensities reflect the values between 0.4 and 1. White dots correspond to containers for which no category is used with
probability above 0.4. Legend for each language shows only major terms.

follow this approach and test its predictions in qualitatively
different semantic domains.

Study I: Container names
The goal of this experiment is to test the theoretical predic-
tions derived from IB in the case of container naming. It is not
clear whether previous findings for color would generalize to
this case for several reasons. First, the representation of arti-
facts is likely to involve more than just a few basic perceptual
features, unlike color. Second, categories in this domain are
believed to be strongly shaped by adaptation to changes in the
environment (Malt, Sloman, Gennari, Shi, & Wang, 1999).
At the same time, container categories tend to overlap, as in
the case of color categories, posing a similar theoretical chal-
lenge to explain this observation in terms of communicative
efficiency. Finally, the bilingual lexicon in this domain has
been extensively studied, and it has been shown that bilin-
gual naming patterns tend to converge (Ameel et al., 2005,
2009). However, it is not yet clear whether this convergence,
or compromise, comes at a cost in communicative efficiency,
or whether it may actually be formalized and explained in
terms of efficiency.

Data. To address these open questions, we consider sort-
ing and naming data collected by White et al. (2017), relative
to a stimulus set of 192 images of household containers (see
Figure 3A for examples). This set is substantially larger than
those used in previous container-naming studies (e.g. Malt et
al., 1999; Ameel et al., 2005), thus providing a better rep-

resentation of this semantic domain. In the naming task, 32
Dutch and 30 French monolingual speakers, as well as 30
bilingual speakers, were asked to provide names for the con-
tainers in the stimulus set. Bilingual participants performed
the task once in each language. The container-naming dis-
tribution in each of the four conditions (language ◊ linguis-
tic status) is defined by the proportion of participants in that
condition that used the word w to describe a container c. A
separate sorting task was performed by 65 Dutch speakers,
who were asked to organize all containers into piles based on
their overall qualities. Participants were also allowed to form
higher-level clusters by grouping piles together. White et al.
(2017) evaluated the similarity between two containers, de-
noted here by sim(c,cÕ), based on the number of participants
that placed them in the same pile or cluster (see White et al.,
2017 for detail). In both tasks, participants were instructed
not to take into account the content of the object (e.g., water).

Model. We ground the meaning space in the similarity data,
following a related approach proposed by Regier et al. (2015)
and Xu et al. (2016). While these data are from Dutch speak-
ers, there are only minor differences in perceived similarities
among speakers of different languages (Ameel et al., 2005).
Therefore, we assume that these similarity judgments reflect
a shared underlying perceptual representation of this domain.
We take U to be the set of containers in the stimulus set,
and define the mental representation of each container c by
the similarity-based distribution it induces over the domain,
mc(u) Ã exp(“ · sim(c,u)), where “≠1 is taken to be the
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empirical standard deviation of sim(c,u). In contrast with
the case of color, in which these mental representations were
grounded in a standard perceptual space, here there is no stan-
dard perceptual space for containers, and so our assumed un-
derlying perceptual representation requires further validation,
which we leave for future work. We define the need distribu-
tion, p(mc), by averaging together the least informative (LI)
priors for the different languages, as proposed by ZKRT. We
used only the monolingual data for this purpose, and regular-
ized the resulting prior by adding ‘ = 0.001 to it and renor-
malizing.

Results
We estimated the theoretical limit of efficiency for container
naming by applying the IB method (Tishby et al., 1999), as
ZKRT did in the case of color naming, here with 1500 val-
ues of — œ [0,1024]. We evaluated the empirical complex-
ity and accuracy in the four naming conditions by entering
the corresponding naming distributions in the equations for
Iq(M ;W ) and Iq(W ;U). The results are shown in Figure 2
and Table 1. It can be seen that container naming in Dutch
and French lie near theoretical limit, both for monolinguals
and bilinguals, and that bilinguals achieve similar levels of
efficiency as monolinguals (Table 1). In all four cases, the
corresponding IB solution is at —l ¥ 1.2, suggesting that there
is only a weak preference for accuracy over complexity in this
domain, as also found for color naming.

Consistent with the empirical observations of convergence
in the bilingual lexicon, the complexity-accuracy tradeoffs in
bilinguals are closer to each other (Figure 2, orange and red
dots) compared to the monolingual tradeoffs (Figure 2, blue
and green dots). This may be explained by a need to reduce
the complexity of maintaining two naming systems simul-
taneously, while achieving monolingual-like levels of effi-
ciency in each language. To test this possibility, we compared
two joint French-Dutch systems that bilinguals may employ:
one that randomly selects one of the two monolingual sys-
tems to name objects, and another that randomly selects one
of the two bilingual systems. We found a 0.16% reduction
in the complexity of the joint bilingual system compared to
the joint monolingual system. Although this is a small ef-
fect, it may accumulate across domains to have a substantial
impact. In addition, our simple calculation did not take into
account similar word forms, which may also reduce complex-
ity (Ameel et al., 2005). Thus, this finding suggests that the
convergence in the bilingual lexicon may be shaped, at least
in part, by pressure for efficiency.

The remainder of our analysis focuses on the monolingual
systems, as they are more distinct and presumably more rep-
resentative of each language. To get a precise sense of how
challenging it may be to reach the observed levels of effi-
ciency, we compared the actual naming systems to a set of
hypothetical systems that preserve some of their statistical
structure. This set was constructed by fixing the conditional
distributions of words, while shifting how they are used by
applying a random permutation of the containers. For each

Table 1: Evaluation of the IB container-naming model.
Lower values indicate a better fit of the model. Values for
hypothetical systems are averages ±SD over 10,000 systems.

Inefficiency Dissimilarity
Dutch monolingual 0.16 0.11

bilingual 0.17 0.12
hypothetical 0.29 (±0.02) 0.59 (±0.05)

French monolingual 0.18 0.11
bilingual 0.17 0.09
hypothetical 0.31 (±0.01) 0.56 (±0.06)

language we constructed 10,000 such hypothetical systems.
Table 1 shows that these hypothetical systems are substan-
tially less efficient than the actual systems, and are also less
similar to the IB systems. In fact, both languages achieve
better (lower) scores than all of their hypothetical variants,
providing a precise sense in which they are near-optimal ac-
cording to IB. One possible concern is that this outcome may
be a result of the LI prior, which was fitted to the naming data.
To address this, we repeated this analysis with a uniform need
distribution. The results in that case are similar (not shown),
although as expected the fit to the actual systems is not as
good compared to the LI prior.

The low dissimilarity scores for the actual languages,
shown in Table 1, suggest that the observed soft category
structure in this domain may also be accounted for by the
IB systems. This is indeed supported by a fine-grained com-
parison between the naming distribution in both languages
and their corresponding IB systems. To see this, we embed-
ded the 192 containers in a 2-dimensional space by applying
non-metric multidimensional scaling (nMDS) with respect to
the similarity data, similar to Ameel et al. (2009). This was
done using the scikit-learn package in Python. We initialized
the nMDS procedure with a solution for the standard metric
MDS that achieved the best fit to the similarity data out of
50 solutions generated with random initial conditions. For
visualization purposes, we assigned a unique color to each
container. The resulting 2D embedding and color coding of
the containers stimulus set are shown in Figure 3A.

The monolingual systems in Dutch and French are shown
in Figure 3B, together with their corresponding IB systems.
These two IB systems are very similar, although not identi-
cal, which is not surprising given that the naming patterns
in Dutch and French are fairly similar. Both the actual sys-
tems and the IB systems exhibit soft category structure and
similar patters of inconsistent naming, as shown by the white
dots. In addition, since each category is colored according to
its centroid, similarity between the category colors together
with their spatial distribution reflect the similarity between
the full naming distributions. For example, the IB systems
have a category that is similar to fles and bouteille, as well
as a category that is similar to doos and boı̂te in Dutch and
French respectively, although these categories in the IB sys-
tems are a bit narrower. The IB systems also capture the
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Figure 4: A. Brown’s (1984) proposed hierarchy for animal categories. B. Subset of the conditional probabilities of features
(columns) given animal classes (rows), for the 5 most familiar classes and 12 most frequently generated features. C. Theoretical
limit for animal naming. Colored dots along the curve correspond to the systems shown in (D), with k = 2,3,4 categories.
D. Animal category hierarchy derived from IB. Each level corresponds to an IB system. Each box corresponds to a category,
which is represented by its top five classes (left) and features (right) and their probabilities given the category.

category tube quite well in both languages. However, there
are also some apparent discrepancies. For example, the dis-
tinction between bouteille and flacon in French is reflected
in both IB systems, although Dutch does not have the same
pattern in this case (Ameel et al., 2005).

This analysis shows that efficiency constraints may to a
substantial extent explain the container-naming distribution
in Dutch and French, including soft category boundaries and
inconsistent naming observed empirically, both in monolin-
guals and bilinguals. It thus supports the hypothesis that a
drive for information-theoretic efficiency shapes word mean-
ings across languages and across semantic domains. How-
ever, since this analysis is based only on two closely related
languages, we were not able to test how well the results for
this domain generalize across languages. Important direc-
tions for future research include testing whether these results
generalize to other, preferably unrelated, languages, and fur-
ther testing the extent to which the convergence in the bilin-
gual lexicon is influenced by pressure for efficiency. The next
section focuses on another semantic domain for which we are
able to obtain broader cross-linguistic evidence.

Study II: Folk biology
Cross-language variation and universal patterns in animal
taxonomies have been extensively documented and stud-
ied (Berlin, 1992), however this domain has not yet been ap-
proached in terms of efficient communication. By analogy
with Berlin and Kay’s theory, Brown (1984) proposed an im-
plicational hierarchy for animal terms, based on data from
144 languages. Brown identified six stages for animal tax-
onomies, as illustrated in Figure 4A. Languages at the first
stage do not have any lexical representation for life-forms.

Languages at stages 2-4 add terms for fish, bird and snake,
but Brown does not argue for any particular order for these
categories. Terms for mammal and wug (“worm-bug”, refer-
ring in addition to small insects) are added in stages 5 and 6,
again with no implied order. Much of the data analyzed in this
domain is not fine-grained, and Brown’s proposal has been
criticized (Randall & Hunn, 1984) mainly due to lack of suf-
ficiently accurate data. Nonetheless, his observations can be
considered as a rough approximation of cross-linguistic ten-
dencies in this semantic domain. Therefore, in this work we
aim at testing whether broad cross-linguistic patterns, as sum-
marized by Brown’s proposal, can be accounted for in terms
of pressure for efficiency. More specifically, our goal is to
derive from the IB principle a trajectory of efficient animal-
naming systems, analogous to ZKRT’s trajectory for color,
and to compare this trajectory to the naming patterns reported
by Brown. However, unlike previous comparisons to IB op-
tima, due to the nature of available data, here we only attempt
to make coarse comparisons.

To derive a trajectory of efficient animal-naming systems,
we first need to specify the communication model in this do-
main. We ground the representations of animals in high-level,
human-generated features. Specifically, we consider the Leu-
ven Natural Concept Database (De Deyne et al., 2008), which
contains feature data and familiarity ratings for animal classes
(e.g., “cat”, “chicken”, etc.). These data were collected from
Dutch speakers, and then translated to English. We fol-
low Kemp, Chang, and Lombardi (2010), who considered
113 animal classes and 757 features from this database, and
for each feature u and class c estimated the conditional prob-
ability p(u|c) based on the number of participants who gen-
erated this feature for that class (see Figure 4B for exam-
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ples). We take U to be the set of animal features, and assume
each animal class is mentally represented by the distribution
it induces over features, i.e. mc(u) = p(u|c), as estimated
by Kemp et al. (2010). In addition, we follow Kemp et al.
(2010) in using a familiarity-based prior over animal classes,
in which the probability of a class is proportional to its famil-
iarity score. We define the need distribution to be this prior.

Given these components, we estimated the theoretical limit
for animal naming (Figure 4C) using the same method as be-
fore, this time with 3000 values of — œ [0,213]. We then
selected the most informative systems with k = 2,3,4 cat-
egories. The number of categories, k, was determined by
considering categories w with probability mass q—(w) >
0.00001. These systems are shown in Figure 4D, where
each layer of the hierarchy corresponds to a system and
each box corresponds to a category within that system. The
top layer, with a single category, corresponds to a non-
informative system that does not distinguish between differ-
ent animal classes. This can be considered as a stage 1 system
in Brown’s sequence. The second layer (shown in orange)
roughly corresponds to a stage 2 system. It consists of a fish
category, as can be inferred from the distribution it induces
over features and animals, and another category for all other
animals. It lies very close to the origin in Figure 4C, as it
maintains little information about most animals. The third
layer (shown in red) corresponds to a system with categories
for fish and wug, as well as a category that is dominated by
birds and mammals. The bird-mammal category has greater
probability mass (0.8) than the wug category (0.14), suggest-
ing that it is more prominent even though these two categories
appear together. This transition deviates from Brown’s se-
quence in the early appearance of wug (although not strongly
weighted here), and in lacking a snake category (although an-
imals from that category do appear in the Leuven database).
One possible explanation for this deviation is that the fea-
ture data on which we relied were obtained from Dutch par-
ticipants, and are thus strongly biased toward Western soci-
eties. In the next layer (shown in blue), the 3-category system
evolved to a 4-category system by refining the bird-mammal
category, resulting in a system that roughly corresponds to a
Brown stage 6 system, with the exception of snake.

These results suggest that animal naming systems may
evolve under efficiency pressure much as color appears to, de-
spite the qualitative difference between these domains. How-
ever, in order to test this proposal more comprehensively,
fine-grained cross-linguistic animal naming data is required,
comparable to the naming data for colors and containers. The
fact that systems along the theoretical limit capture some
cross-linguistic tendencies in animal taxonomies is notable,
given that our characterization of the domain, in terms of fea-
tures, was necessarily strongly biased toward animal repre-
sentations in Western societies. This finding supports the idea
that to some extent at least there is a shared underlying repre-
sentation of animals across cultures (Mayr, 1969), while also
raising the interesting possibility of some cross-language and

cross-cultural differences in underlying representations. It is
also worth noting that the salient features in the IB systems
tend to be both perceptual (e.g., “is big”) and functional (e.g.,
“is edible”), suggesting that both types of features may shape
animal categories across languages, and that this may be con-
sistent with pressure for efficiency (Kemp et al., 2018).

Although we introduced the hierarchy in Figure 4D as an
account of category structure across languages, the same hi-
erarchy could potentially serve as a model of hierarchical
structure within a single language. This within-language in-
terpretation resembles previous applications of the IB prin-
ciple to language (Pereira, Tishby, & Lee, 1993), although
these applications were based on corpus statistics. The
within-language interpretation seems useful in the case of an-
imal taxonomies, a semantic domain with strong hierarchical
structure, as opposed to containers and even colors. A possi-
ble, yet speculative, reconciliation of the within-language and
cross-language interpretations is that speakers may internally
represent a hierarchy induced by an evolutionary sequence.
For example, Boster (1986) showed that English speakers can
recapitulate Berlin and Kay’s implicational color hierarchy in
a sequential pile-sorting task. Thus, it seems at least possible
that a similar phenomenon may also hold for animal cate-
gories.

General discussion
Artifacts, animals, and colors are qualitatively different ele-
ments of human experience, yet our findings suggest that their
semantic representations across languages is governed by the
same general information-theoretic principle: efficient cod-
ing of meanings into words, as defined by the IB principle.
We have shown that this theoretical account, which was pre-
viously tested only in the domain of color naming (ZKRT),
generalizes to container names and animal taxonomies. This
finding resonates with the proposal that word meanings may
be shaped by pressure for efficient communication (Kemp
et al., 2018). However, it goes beyond that proposal by ex-
plaining how pressure for efficiency may account for soft cat-
egories and inconsistent naming, both in monolinguals and
bilinguals, and how it may relate to language evolution.

An important direction for future research is to test to what
extent our results extend to other semantic domains, and ide-
ally, to the lexicon as a whole. While it may not be possible
to apply this approach to every aspect of the lexicon, we be-
lieve that the theoretical formulation considered here may be
broadly applicable across semantic domains.
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Abstract

Gibson et al. (2017) argued that color naming is shaped by patterns of communicative need. In

support of this claim, they showed that color naming systems across languages support more pre-

cise communication about warm colors than cool colors, and that the objects we talk about tend

to be warm-colored rather than cool-colored. Here, we present new analyses that alter this picture.

We show that greater communicative precision for warm than for cool colors, and greater commu-

nicative need, may both be explained by perceptual structure. However, using an information-theo-

retic analysis, we also show that color naming across languages bears signs of communicative

need beyond what would be predicted by perceptual structure alone. We conclude that color nam-

ing is shaped both by perceptual structure, as has traditionally been argued, and by patterns of

communicative need, as argued by Gibson et al. —although for reasons other than those they

advanced.

Keywords: Information theory; Color naming; Categorization
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1. Introduction

Languages vary widely in the ways they partition colors into categories. At the same

time, this variation is constrained, and similar color naming systems are often seen in

unrelated languages (e.g., Berlin & Kay, 1969; Lindsey & Brown, 2006). The forces that

give rise to this constrained variation have long been debated, and it is often held that a

major role is played by perceptual structure (e.g., Kay & McDaniel, 1978). A variant of

this view emphasizes in addition the importance of communicative forces, and it argues

that languages divide perceptual color space into categories in ways that support efficient

communication (Baddeley & Attewell, 2009; Jameson & D’Andrade, 1997; Lindsey

et al., 2015; Regier et al., 2007; Regier et al., 2015; Zaslavsky et al., 2018).

Recently, Gibson et al. (2017) suggested an even greater role for communicative

forces. They proposed that cross-language commonalities in color naming may reflect

a human need to refer to particular colors more than others, and they presented this

hypothesis as an alternative to one based on perceptual salience (p. 10785). They

showed that color naming systems across languages support more precise communica-

tion about warm colors than cool colors, and that the objects we talk about tend to

be warm-colored rather than cool-colored—suggesting that color naming systems may

have adapted to a general human need to communicate preferentially about warm col-

ors.

Here, we engage this argument and present results that suggest a somewhat different

conclusion. We first present the core of Gibson et al.’s argument in detail and replicate

their findings. We then consider an alternative explanation of their findings and show that

greater communicative precision for warm than for cool colors, and greater need for

warm colors, may both be explained by perceptual structure, without any additional com-

municative preference for warm colors. We next present a novel information-theoretic

analysis of the link between need and communicative precision, and we use that analysis

to infer need from color naming data. On that basis, we show that color naming across

languages bears signs of communicative need beyond what would be predicted by percep-

tual structure alone. We conclude that color naming is shaped both by perceptual struc-

ture, as has traditionally been argued, and by patterns of communicative need, as argued

by Gibson et al.—although our reasons for implicating need are different from theirs.

2. The argument of Gibson et al. (2017)

Gibson et al. found that across languages, warm colors tend to be communicated

more precisely than cool colors. They also found that the objects we talk about tend

to be warm-colored rather than cool-colored, and in that sense warm colors have

higher communicative need. They concluded that the warm–cool asymmetry in com-

municative precision across languages “reflects colors of universal usefulness” and that

the principle of color use “governs how color categories come about”
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(p. 10785). They presented this idea as an alternative to proposals based on perceptual

salience (p. 10785). Below we present the data they considered, and their definitions

of communicative precision and communicative need, which inform our own analyses.

2.1. Data

Gibson et al. based their analysis primarily on color naming data from the World

Color Survey (WCS: Cook, Kay, & Regier, 2005). The WCS dataset contains color nam-

ing data from 110 languages of non-industrialized societies. In the WCS, native speakers

of each language were asked to provide a name for each of 330 color chips. Gibson et al.

analyzed naming data for the subset of 80 color chips shown in Fig. 1, for all WCS

languages and also for three languages for which they collected data: English, Spanish,

and Tsiman�e. For each language l, each color term w in l, and each color chip c, they
estimated the color naming distribution plðwjcÞ as the proportion of speakers of l who
used w rather than some other term to name c.

2.2. Communicative need

A need distribution, reflecting how often a given color c is used in communication,

can be naturally considered a prior distribution p(c) over colors (Regier et al., 2015). Gib-
son et al. considered two priors: a uniform prior and a “salience-weighted prior” (p. 27

of their SI). In the salience-weighted prior, the probability of each color was determined

by the proportion of times that color appeared in a foreground object, rather than in the

background, in their study of natural images. This prior was based on the assumption that

foreground objects are more likely to be talked about than are backgrounds. This sal-

ience-weighted prior exhibits greater probability mass for warm colors than for cool col-

ors (see Fig. 4C).

2.3. Communicative precision

Gibson et al. considered the expected surprisal of a given color c, with respect to a

color naming distribution p(w|c) and a prior p(c), defined by

Fig. 1. The 80 color chips analyzed by Gibson et al. (2017), represented in the standard WCS palette. White

spaces indicate WCS chips that were excluded from the analysis. The achromatic WCS color chips were also

excluded.
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SðcÞ ¼ �
X

w

pðwjcÞ log pðcjwÞ; ð1Þ

where p(c|w) is obtained by applying Bayes’ rule:

pðcjwÞ ¼ pðwjcÞpðcÞP
c0 pðwjc0Þpðc0Þ

: ð2Þ

Lower values of S(c) correspond to higher communicative precision for a given color c.
Gibson et al. found that across languages S(c) tends to be lower for warm colors (reds/

yellows) than for cool colors (blues/greens), when evaluated either with the uniform prior

or with the salience-weighted prior. We replicated these results on very similar data (the

WCS+ dataset; see below) for both priors, as shown in Fig. 3A and 3B.

Notice that S(c) depends both on the prior p(c) and on the naming system p(w|c), and
thus these results are an outcome of the combination of need and language. Here, we fur-

ther explore the nature of this combination in two ways: first by using the same priors as

Gibson et al. while considering new hypothetical color naming data, and second by keep-

ing the color naming data fixed and considering new priors.

3. The role of perceptual structure

The crux of Gibson et al.’s argument is that the warm–cool asymmetry in precision

may reflect the warm–cool asymmetry in need. Another possibility, however, is that both

asymmetries may be produced by a common underlying cause, perhaps perceptual in nat-

ure. Fig. 2 re-plots the 80 colors from Fig. 1 in CIELAB color space, in which the Eucli-

dean distance between nearby colors corresponds roughly to their perceptual dissimilarity

(Brainard, 2003; but see also Komarova & Jameson, 2013). This visualization shows that

there exist potentially relevant perceptual asymmetries of color—and in fact this percep-

tual structure has been used to explain patterns of color naming across languages (Jame-

son & D’Andrade, 1997; Regier et al., 2007, 2015; Zaslavsky et al., 2018). We wished to

understand whether the structure of perceptual color space could also explain the asym-

metry in precision documented by Gibson et al., or that in need, or both—a possibility

acknowledged by Gibson et al. (p. 10789).

To test whether perceptual structure can account for the warm–cool precision asymme-

try, we considered a set of hypothetical color naming systems that were derived solely

from the structure of color space, without any additional element of communicative need.

We began with the color naming data of the WCS, supplemented by data for English

(Lindsey & Brown, 2014); we call this joint dataset WCS+. We considered the same 80

chips used by Gibson et al. Then for each actual language l, we constructed a correspond-

ing hypothetical system by clustering the 80 color chips into kl categories, using the k-
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means algorithm with respect to the Euclidean distance between colors in CIELAB space.

We took kl to be the number of color terms in language l for which at least two speakers

used that term to name the same color chip. In an attempt to avoid local optima, we ran

the k-means algorithm 30 times for each language and retained the best solution. This

procedure yielded a set of artificial color naming systems that are comparable in number

of terms to those in our cross-language data but are determined only by the structure of

perceptual color space, with no additional element of need.

The lower panels of Fig. 3 show that these k-means systems exhibit a warm–cool sur-
prisal asymmetry broadly similar to that in the actual languages, both with the uniform

prior (Fig. 3C) and with the salience-weighted prior (Fig. 3D). In support of this qualita-

tive observation, with the salience-weighted prior, we found a strong correlation

(r = 0.73, p < 0.0001) between S(c) averaged across actual languages and S(c) averaged
across the corresponding k-means systems. With the uniform prior, although an overall

warm–cool asymmetry is visually apparent, there is also a clear discrepancy between the

actual languages and the k-means systems: Light colors tend to have relatively low sur-

prisal in the actual languages, but high surprisal in the k-means systems. In this case we

did not find a significant correlation between average surprisal across actual and k-means

systems when considering all color chips, but we did find a significant correlation

(r = 0.57, p < 0.0001) when focusing specifically on warm and cool colors by excluding

the chips in rows ‘B’ and ‘I’ in Fig. 1A, which correspond roughly to light and dark.

These results suggest that the warm–cool precision asymmetry found for actual languages

under Gibson et al.’s priors may to some extent reflect perceptual structure.

Perceptual structure may also explain the pattern of color use or need that Gibson

et al. reported and captured in their salience-weighted prior itself, according to which

foreground objects (as opposed to their backgrounds) are more likely to be warm-colored

rather than cool-colored. We found that their salience-weighted prior is correlated

(r = 0.49, p < 0.0001) with the distance of each chip from central gray in CIELAB

Fig. 2. The 80 color chips of Fig. 1, represented in CIELAB color space. L� corresponds to lightness, and

hue and saturation are represented in polar coordinates in the orthogonal plane defined by a� and b�. The
irregular distribution of these colors reflects a perceptual asymmetry between warm and cool colors.
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Fig. 3. (A and B) Replication of the results reported by Gibson et al. (2017) for the uniform prior and sal-

ience-weighted prior. Across languages, warm colors have lower expected surprisal than cool colors. (C and

D) Analogous analyses in which each language’s color naming system was replaced by a hypothetical color

naming system obtained by k-means clustering of the color chips represented in CIELAB space. These per-

ceptually derived hypothetical systems also exhibit a warm–cool surprisal asymmetry.
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space,1 suggesting that the salience-weighted prior reflects how “un-gray” and thus per-

ceptually salient different colors are. It is possible that useful objects are often saliently

(warmly) colored so as to attract human attention.

Taken together, these results suggest a possible perceptual common cause for both of the

qualitative asymmetries in communicative precision and communicative need that Gibson

et al. documented. However, these results still leave open the possibility that color naming

across languages may be shaped by an element of need beyond what is predicted by percep-

tual structure. In the following sections we demonstrate an information-theoretic link

between communicative need and precision, and use it to address this open question.

4. Information-theoretic link between need and precision

When viewing language in information-theoretic terms, one often considers a communi-

cation channel between a speaker and a listener (e.g., Baddeley & Attewell, 2009; Gibson

et al., 2013; Plotkin & Nowak, 2000). However, this is not the only potentially relevant

channel. From an information-theoretic perspective, any conditional distribution can be

interpreted as a channel (Cover & Thomas, 2006), and in the present treatment, the lexicon

is captured by the conditional distribution p(w|c), which specifies the probability of using a

color term w for a given color c. Therefore, the lexicon itself can be seen as a channel, and

one may explore the capacity of that channel—that is, the maximal amount of information

about color that can be conveyed by that lexicon.

Formally, the input to this channel is a color c, taken from a set C of colors, and the

output is a word w, taken from a set W of possible words. Here we define C to be the 80

color chips shown in Fig. 1, and W to be an arbitrary set of K words, where K is deter-

mined by the number of color terms in the language. Shannon’s channel coding theorem

(Shannon, 1948) states that the maximal number of bits on average that can be transmit-

ted per channel use is determined by the channel capacity, which is defined as the maxi-

mal mutual information between the input and output, namely by

max
pðcÞ

IðW ;CÞ; ð3Þ

where the maximization is over all possible choices of p(c), and the mutual information is

IðW ;CÞ ¼
X

c;w

pðcÞpðwjcÞ log pðcjwÞ
pðcÞ : ð4Þ

A distribution p(c) over C that attains the channel capacity, that is, a maximizer of Eq.

(3), is called a capacity-achieving prior (CAP). In our case, since C and W are finite sets, a

capacity-achieving prior can be found via the Blahut–Arimoto algorithm (Arimoto, 1972;

Blahut, 1972). This algorithm is based on the fact that by differentiating Eq. (4) with

respect to p(c) we get the following necessary and sufficient2 condition for optimality:
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pðcÞ / expð�SðcÞÞ: ð5Þ

We find it interesting that while Blahut and Arimoto derived the expression for S(c)
from the capacity achieving principle, the same expression has been used for different

reasons by Gibson et al. and others (e.g., Piantadosi et al., 2011). Note that Eq. (5) defines

a self-consistent condition for optimality, because S(c) also depends on the prior. By taking

the log on both sides of Eq. (5) we get that a prior is a CAP if and only if it satisfies

� log pðcÞ ¼ SðcÞ þ logZ; ð6Þ

where Z is the normalization factor of Eq. (5).

Thus, need and communicative precision are linked through the capacity achieving

principle. Specifically, for a capacity-achieving prior, that is, a prior p(c) that maximizes

the information about color that is conveyed by a given lexicon, we should see a simple

linear relationship, with slope 1, between � log p(c) and the expected surprisal (or com-

municative imprecision) S(c). Notice that the link between p(c) and S(c) in Eq. (6)

implies that, ideally, patterns in p(c) would be mirrored in S(c), and thus the link is con-

sistent with Gibson et al.’s findings. However, this link makes a stronger claim in that it

specifies more precisely what the relation between need and precision should be, and it

does so on theoretically motivated grounds. In the next section we use this information-

theoretic link to present new evidence that color naming across languages may indeed

reflect universal patterns of communicative need, as well as perceptual structure.

5. Inferring need from naming data

The capacity achieving principle provides a basis for inferring a theoretically moti-

vated need distribution from color naming data. Concretely, given a color naming system,

this principle allows us to infer what the accompanying need distribution or prior should

be in order to maximize the precision of the given lexicon.

We considered three different priors and assessed their effects in analyses of a single

dataset, WCS+. We inferred a capacity-achieving prior from the WCS+ data itself (WCS-

CAP, Fig. 4A): This is an idealized prior that is implicit in these actual color naming sys-

tems. We similarly inferred a capacity-achieving prior from the artificial naming data

explored above that are derived from k-means clustering (KM-CAP, Fig. 4B): This is an

idealized prior implicit in these artificial systems that are based on perceptual structure

alone. In each case, following Zaslavsky et al. (2018), we evaluated the CAP plðcÞ for

each language l (real or artificial) with respect to its color naming distribution plðwjcÞ,
and averaged together these language-specific priors in order to infer a universal need

distribution.3 That is, we defined
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pðcÞ ¼ 1

L

XL

l¼1

plðcÞ; ð7Þ

where L = 111 is the number of languages in the WCS+ dataset.

For comparison with these inferred priors, we also considered the salience-weighted

prior of Gibson et al. (Fig. 4C), which is not inferred but is instead grounded directly in

the frequency with which colors appear in foreground objects vs. backgrounds in natural

images. For each of these three priors—WCS-CAP, KM-CAP, and salience-weighted—
we entered it as p(c) into Eq. (2), and then used Eq. (1) to obtain the expected surprisal S
(c) for each language in the WCS+ data given that prior. We then assessed each prior in

two ways: first by asking whether we obtain the CAP-predicted linear relationship

between � log p(c) and S(c), and second by sorting chips by S(c) and asking whether we

observe the warm–cool surprisal asymmetry reported by Gibson et al. and also seen in

our Fig. 3.

The results are shown in Fig. 5. Comparing first just the two inferred priors, WCS-

CAP and KM-CAP, we see that the linear relation between � log p(c) and average S(c)
is dissociable from the warm–cool surprisal asymmetry: WCS-CAP shows a linear rela-

tion but not a clear warm–cool asymmetry, whereas KM-CAP shows a clear warm–cool

Fig. 4. Inferred (A: WCS-CAP, B: KM-CAP) and directly measured (C: salience-weighted) priors. Chips

along the x-axis are rank ordered according to p(c). Dashed line corresponds to a uniform prior. KM-CAP

and salience-weighted exhibit a warm–cool asymmetry, whereas WCS-CAP exhibits a weaker tendency for

warm colors and the two most needed colors according to this prior correspond to light and dark.

N. Zaslavsky et al. / Topics in Cognitive Science (2018) 9

79



asymmetry but not a clear linear relation (r = 0.32, p < 0.01). The presence of a very

clean linear relation for WCS-CAP reassures us that by averaging the language-specific

CAPs, we inferred a universal need distribution largely consistent with Eq. (6).4 It is per-

haps more surprising that the warm–cool asymmetry vanishes under this well-motivated

prior, given that it has persisted under others (recall Fig. 3). The absence of the warm–
cool surprisal asymmetry under WCS-CAP demonstrates the sensitivity of this asymmetry

to the assumed prior. At the same time, the lack of a clear linear relation between

� log p(c) and average S(c) under KM-CAP suggests that this prior is not well-suited for

precise communication using the naturally occurring color naming systems of the WCS+
dataset. KM-CAP is ultimately derived from perceptual structure, whereas WCS-CAP is

derived from the actual WCS+ languages, and both priors are derived using the same

principle. Thus, the difference between them, seen in Figs. 4 and 5, can be attributed to

features in the WCS+ data that are not simply a reflection of perceptual structure.

With this by way of stage-setting, consider now the results for the salience-weighted

prior. It exhibits a warm–cool surprisal asymmetry on the WCS+ data (in fact, this panel

simply replicates Fig. 3B) and also exhibits a roughly linear relation between � log p(c)
and average S(c), with slope close to 1 (r = 0.83, p < 0.0001). This linear relation is sig-

nificant for two reasons. First, the fact that this relation is found for the salience-weighted

prior but not for the perceptually based KM-CAP suggests that the salience-weighted

prior (like WCS-CAP) exhibits signs of need beyond what is predicted by perceptual

structure. Second, this roughly linear relation demonstrates an information-theoretic fit

between cross-language color naming data and this prior, which was independently

empirically obtained by Gibson et al.

6. Discussion

As stated in their title, Gibson et al. (2017) argued that “color naming across languages

reflects color use.” They presented this claim as an alternative to accounts of color nam-

ing based on perceptual salience. In support of this claim, they presented evidence of a

warm–cool asymmetry in communicative need and a corresponding asymmetry in com-

municative precision in color naming across languages—suggesting that color naming

systems may have adapted to a universal human tendency to communicate preferentially

about warm colors. Here, we have cast this argument in a new light. We have shown that

both qualitative asymmetries may be alternatively explained by a common cause: the

structure of perceptual color space. Therefore, these two asymmetries are not an unam-

biguous sign that color naming reflects communicative need.

However, by invoking an information-theoretic principle that links need and precision,

we have also presented a different form of evidence that color naming does in fact bear

traces of universal patterns of communicative need beyond what perceptual factors would

predict. Thus, we agree with Gibson et al. that communicative preferences appear to have

left their imprint on color naming systems in the world’s languages (see also Kemp &

Regier, 2012 for a similar argument concerning kin terminologies). However, we differ with
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Gibson et al. in two respects: first, we reach this conclusion on different grounds, and sec-

ond, we find that communicative need may operate in concert with, rather than as an alterna-

tive to, perceptual structure as a determinant of color naming.

More broadly, there is also another possible connection between perceptual structure and

need. Although we have treated these two as independent factors, it may be the case that the

structure of perceptual color space is itself adapted to the statistics of natural scenes (Shep-

ard, 1994) and in that sense is influenced by need. Even in this case, however, the picture is

not entirely straightforward. There is an important distinction in principle, and thus at least

possibly in practice, between the frequency with which particular colors appear in the world

and the frequency with which they must be communicated. It seems likely that our percep-

tual systems may have adapted to the former, and our languages to the latter.
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Notes

1. We took central gray to be located at the midpoint between the CIELAB coordi-

nates for the two achromatic chips that are most intermediate between black and

white in the WCS palette, namely E0 and F0 (not shown in Fig. 1).

2. This follows from the concavity of I(W;C) in p(c). For more detail see Theo-

rem 2.7.4 and section 10.8 in (Cover & Thomas, 2006).

3. We leave for later investigation the interesting question of language-specific need

influences.

4. By substituting WCS-CAP into equation (6) we introduced a nonlinearity because

the language-specific CAPs are averaged inside the log. In principle, this could

have violated equation (6).
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ABSTRACT
Colour naming across languages has traditionally been held to reflect the structure of colour
perception. At the same time, it has often, and increasingly, been suggested that colour naming
may be shaped by patterns of communicative need. However, much remains unknown about
the factors involved in communicative need, how need interacts with perception, and how this
interaction may shape colour naming. Here, we engage these open questions by building on
general information-theoretic principles. We present a systematic evaluation of several factors
that may reflect need, and that have been proposed in the literature: capacity constraints,
linguistic usage, and the visual environment. Our analysis suggests that communicative need in
colour naming is reflected more directly by capacity constraints and linguistic usage than it is by
the statistics of the visual environment.
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1. Introduction

Colour naming varies widely across languages. At the
same time, this variation is constrained, and certain
universal tendencies of colour naming recur across
unrelated languages (e.g., Berlin & Kay, 1969; Lindsey
& Brown, 2006). Figure 1 shows the colour naming
systems of four languages, illustrating this variation.
As can be seen, both the number of terms and their
extension vary across languages, but it is also the
case that some cross-language commonalities can
be found, such as the existence of terms roughly cor-
responding to English “red” and “yellow”.

Why do the colour naming systems of the world’s
languages vary as they do? Why do we see these
systems and not other logically possible ones?
Broadly speaking, three classes of explanation have
been proposed, emphasizing colour perception, com-
municative need, or both, as illustrated in Figure 2. Tra-
ditionally, cross-language variation has been explained
largely in terms of perception (e.g., Kay & McDaniel,
1978; see Figure 2(a)). On this view, universal ten-
dencies in colour naming are relatively direct reflec-
tions of universals in colour perception. Early work in
this tradition did note in addition the apparent
influence of cultural forces such as level of technologi-
cal development, including dye technology, in

determining the complexity of the colour lexicon, but
these ideas were not pursued in depth and were
instead presented as “plausible speculation” (Berlin &
Kay, 1969, pp. 16–17). The influence of communicative
forces was later explored via multi-agent simulations
(e.g., Dowman, 2007; Loreto, Mukherjee, & Tria, 2012;
Steels & Belpaeme, 2005), and a recent elaboration of
these ideas has suggested concrete roles for both per-
ception and communicative need: specifically it has
been proposed that colour naming reflects perceptual
structure as partitioned for communicative purposes
(e.g., Jameson & D’Andrade, 1997; Komarova,
Jameson, & Narens, 2007; Regier, Kay, & Khetarpal,
2007; see Figure 2(b)). In particular it has been pro-
posed that colour naming across languages may be
shaped by the need for efficient communication: the
need to communicate about colour precisely, but at
minimal cognitive cost (e.g., Lindsey, Brown, Brainard,
& Apicella, 2015; Regier, Kemp, & Kay, 2015). Recently
Gibson et al. (2017) pursued this progression of think-
ing to its logical extreme, proposing that communica-
tive needs do not merely modulate an effect of
perceptual structure—but rather that communicative
needs themselves govern the character of colour cat-
egories (see Figure 2(c)), a hypothesis they situated as
an “alternative” (p. 10785) to accounts based on
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perception. Here, we argue that need and perception
should both be taken into account, in line with earlier
efficiency analyses (back to Figure 2(b)). We review a
principled theoretical framework for achieving this
integration of perceptual structure and communicative
need (Zaslavsky, Kemp, Regier, & Tishby, 2018), and we
use that framework to evaluate the character and role
of communicative need in colour naming.

The empirical basis for our evaluation is a set of
colour naming systems from 111 languages. These
systems were drawn mainly from the World Color
Survey (WCS: Kay, Berlin, Maffi, Merrifield, & Cook,

2009), which contains colour naming data from 110
languages of non-industrialized societies, with
respect to the stimulus grid shown in Figure 1(a). In
addition, we consider colour naming data from Amer-
ican English (Lindsey & Brown, 2014) which were col-
lected with respect to the same stimulus grid. We
refer to this joint dataset as the WCS+ dataset.

The remainder of this paper proceeds as follows. In
section 2, we review recent evidence suggesting that
communicative need—together with perceptual
structure—plays an important role in shaping colour
naming across languages. In section 3, we review a

Figure 1. (Colour image online) (a) A standard colour naming stimulus grid, containing 320 colour chips and 10 achromatic colour chips
(leftmost column). Columns correspond to equally spaced Munsell hues, rows correspond to equally spaced Munsell values (levels of
lightness), and each chip is at the maximum available saturation (colourfulness) for that hue/lightness combination. (b) The 330 colour
chips re-plotted in the CIELAB perceptual colour space, in which Euclidean distance between nearby colours is roughly correlated with
perceptual dissimilarity. L∗ corresponds to lightness, and hue and saturation are encoded in polar coordinates in the (a∗, b∗) plane. The
chips are not evenly distributed in this space. For example, chips in the yellow region are exceptionally highly saturated (colourful) and
therefore protrude farther outward away from other colours. This uneven distribution highlights presumably universal perceptual struc-
ture that may shape colour naming across languages. (c) Examples of colour naming systems from four languages in the colour naming
dataset we consider here, plotted against the stimulus grid. Each plot shows the contours of the naming probabilities for each term in
the language. The naming probabilities for each colour term are depicted in the colour corresponding to the centroid for that term.
Solid lines correspond to level sets of 50% and above, and dashed lines correspond to level sets of 40% and 45%.

Figure 2. Colour naming may be shaped by colour perception, communicative need, or both.
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recent computational model that integrates commu-
nicative need and perceptual structure, and that
accounts for colour naming across languages in
terms of an independent principle of efficiency. In
this model, communicative need is formalized as a
prior distribution over colours; however it is not yet
clear how best to characterize this distribution. In
section 4 we address this problem by presenting
several estimation methods based on different
factors that may reflect communicative need, specifi-
cally capacity constraints, linguistic usage, and the
statistics of colours in the environment. Finally, in
section 5, we evaluate these different factors by asses-
sing how well the corresponding priors account for
colour naming data across languages, in the context
of the model mentioned above.

2. The importance of communicative need

When considering the possible role of communicative
need in shaping colour naming, it is useful to dis-
tinguish two different kinds of need: domain-level
need and object-level need (Kemp, Xu, & Regier,
2018). Domain-level need is the communicative
importance of a given domain, such as colour, relative
to other domains of human experience about which
one may wish to communicate. For example, the
observation that the introduction of dye technology
may push a society or culture to develop a more
fine-grained colour lexicon, mentioned above, is an
observation about domain-level need: with the
advent of dyes, colour as a domain presumably
assumes greater cultural importance than it had pre-
viously, justifying greater complexity in this part of
the lexicon. In section 3 we briefly discuss how
domain-level need may be formalized in terms of
the tradeoff between accuracy and complexity of the
lexicon. Object-level need, in contrast, concerns how
often one may need to communicate about particular
objects within a domain—for example, within the
domain of colour, one may need to talk about
certain colours more than others. It is this sort of
object-level need that is naturally captured as a prior
distribution over colours, and that is the primary
focus of this paper.

As noted above, early accounts of colour naming
emphasized perception over (object-level) communi-
cative need. Some justification for this stance is
suggested by the fact that qualitative patterns of

colour naming across languages can be accounted
for fairly well based only on perceptual structure,
assuming a uniform prior over colours (e.g., Regier
et al., 2015). However this leaves open the possibility
that a better account of the data might be obtained
with a non-uniform need distribution.

In line with this possibility, Gibson et al. (2017)
argued that some colours are more useful than
others for human purposes, and that the usefulness
of particular colours is a major determinant of colour
naming across languages. Specifically, they argued
for the greater usefulness of warm colours, relative
to cool colours, and argued that this asymmetry in
usefulness is reflected in patterns of colour naming.
They showed that across languages, colour categories
tend to support more precise communication for
warm than for cool colours. They also examined
colour statistics in a large dataset of natural images
and found that objects (as opposed to their visual
backgrounds) tend to be warm-coloured rather than
cool-coloured, in a parallel to the warm-cool asymme-
try in language. They suggested on this basis that
colour naming across languages “reflects colors of uni-
versal usefulness” (p. 10785).

Zaslavsky, Kemp, Tishby, and Regier (2019)
engaged this proposal, and argued for a somewhat
different picture. They noted that the finding of a
warm-cool asymmetry in language assumes a prior,
and that the asymmetry vanishes under some well-
motivated priors. They also found that the warm-
cool naming asymmetry, when assessed using the
same priors as Gibson et al. (2017), is present not
only in natural colour naming systems, but also in a
set of artificial colour naming systems that are based
solely on perceptual structure, with no element of
communicative need. These findings suggest that
the warm-cool naming asymmetry, when it is found,
cannot be taken as an unambiguous signature of com-
municative need. However this leaves open the possi-
bility that there may be a different signature of need in
the colour naming data of the world’s languages.
Zaslavsky et al. (2019) proposed such a signature,
based on the notion of a capacity-achieving prior
(treated below in section 4.1), and found that natural
colour naming systems do indeed bear signs of com-
municative need beyond what would be predicted
from perceptual structure alone. Thus, communicative
need does appear to shape colour naming in the
world’s languages.
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A natural conclusion from the work just reviewed is
that patterns of colour naming may result from an
integration of perceptual structure and communica-
tive need. That conclusion leads to an important
open question: what are the factors involved in com-
municative need, and how does need interact with
perception in shaping colour naming? The remainder
of this paper addresses that question.

3. Integration of communicative need and
colour perception

The notion of efficient communication in colour
naming was recently formalized by Zaslavsky et al.
(2018), building on earlier work by Regier et al. (2015),
in a way that integrates perceptual structure and com-
municative need. Zaslavsky et al.’s proposal grounded
the notion of efficient communication in an indepen-
dently motivated information-theoretic principle, the
Information Bottleneck (IB) principle (Tishby, Pereira,
& Bialek, 1999). On that basis, their proposal accounted
to a large extent for the wide variation observed in
colour namingacross languages, provideda theoretical
explanation for the existence of soft colour categories
with graded membership, and synthesized previous
accounts of colour category evolution. For these
reasons, we adopt the IB colour naming model here
as a framework within which different proposed
sources of communicative need may be assessed.

The IB colour naming model is based on a simple
communication scenario between a speaker and lis-
tener, illustrated in Figure 3(a). The speaker observes a
colour c drawn from a prior distribution p(c) over
colours in the environment U , and wishes to communi-
cate this colour to the listener. The prior p(c) reflects the
communicative needs of the speaker, favoring certain
colours over others (Kemp & Regier, 2012; Kemp et al.,
2018). To account for perceptual uncertainty, it is
assumed that the speaker does not have access to the
exact colour but rather to a noisy mental representation
of it,mc ,

1 formulated as a Gaussian distribution centred
at c over colours in theCIELABperceptual space (Figure1
(b)). The speaker communicates this mental represen-
tation to the listener by producing a word w drawn
from a shared lexicon W, according to a naming distri-
bution q(w|c). The listener receives w and interprets
this word by constructing a mental representation m̂w

that approximates the speaker’s representation mc .

According to the IB principle, the ideal speaker and
listener are adapted to each other by jointly optimiz-
ing an information-theoretic tradeoff between the
complexity of the lexicon and the accuracy of com-
munication. This tradeoff is also illustrated in Figure
3(a). Below, we lay out the IB formulations of complex-
ity, accuracy, and their tradeoff.

In IB terms, a colour naming distribution q(w|c) is an
encoder that compresses colours into words. As in
rate-distortion theory (Shannon, 1959), the complexity
of this encoder is measured by the information that
the lexicon maintains about the speaker’s represen-
tation, namely:

I(C; W) =
∑

c[U ,w[W
p(c)q(w|c)log q(w|c)

q(w)
, (1)

where q(w) =
∑

c p(c)q(w|c). This informational com-
plexity roughly corresponds to the number of bits
that are required to represent the lexicon on
average. Similar informational costs have also been
proposed as measures for cognitive effort in other
contexts (e.g., Ferrer i Cancho & Solé, 2003; Genewein,
Leibfried, Grau-Moya, & Braun, 2015; Marzen & DeDeo,
2017; Sims, 2016; Tkačik & Bialek, 2016).

The accuracy of communication is the extent to
which the listener’s interpreted representation is
similar to the speaker’s representation, or in other
words the extent to which the distortion or discre-
pancy between these two representations is small.
Since mc and m̂w are both distributions over colour
space, a natural distortion measure (Harremoës &
Tishby, 2007) is the expected Kullback-Leibler (KL)
divergence between them:

E D[ [mc ∥ m̂w]]

=
∑

c[U ,w[W
p(c)q(w|c)

∑

u[U
mc(u)log

mc(u)
m̂w(u)

. (2)

There is necessarily a tradeoff between accuracy and
complexity. Maximizing accuracy amounts to minimiz-
ing the distortion given by Equation 2, which will be
achieved when D[mc ∥ m̂w] = 0, i.e., when
mc ; m̂w . This in turn will require a very complex
lexicon, with a separate word for each colour, so that
each colour can be communicated with perfect accu-
racy. On the other hand, minimizing complexity can
be achieved by using a single word to describe all
colours, but in this case accuracy will necessarily be
low, i.e., communication will not be informative. The
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tradeoff between these two competing forces is given
by the following equation, which is equivalent to the
standard IB objective function:

min
q(w|c), m̂w

I(C; W)+ bE D[ [mc ∥ m̂w]], (3)

where the tradeoff parameter b ≥ 0 controls how
complexity and accuracy are balanced.

The optimal IB colour naming systems, i.e., the
systems that optimize Equation 3 for different values
of b, define the theoretical limit of achievable
tradeoffs. Zaslavsky et al. (2018) evaluated this theoreti-
cal limit and found that the colour naming systems in
the WCS+ data are near-optimal in that they lie near
this theoretical limit (Figure 3(b)). This suggests that
languages may have evolved under pressure for infor-
mation-theoretic efficiency. It can be seen that vari-
ation in the tradeoff parameter b accounts for much
of the cross-language variation in the WCS+ data—
meaning that different languages navigate the
tradeoff between accuracy and complexity in
different ways, while remaining near the theoretical
limit of efficiency. It is natural to interpretb as capturing
domain-level need, or the cultural importance of colour
as a domain in a given society (recall section 2): the
more important it is to communicate accurately
about colour, the more it is justified to allow greater
complexity to achieve that accuracy—and this
tradeoff is exactly what b controls. This notion is cap-
tured memorably in the title of a paper that described
colour naming in a society for which colour is relatively
unimportant: “We don’t talk much about colour here”

(Kuschel & Monberg, 1974); as would be expected,
the colour system of this language was found to be
very simple, having only three basic colour terms.

Importantly, the findings just reported were
obtained with a specific non-uniform prior which is
based on the notion of capacity-achieving priors
(WCS-CAP, see section 4.1 for detail). It is not yet
clear whether other well-motivated priors could
provide a better account of the data.

In what follows, we systematically investigate the
effect of different priorswhile keeping all the other com-
ponents of the IB colour naming model fixed. Prepara-
tory to doing so, it may be useful to note how both
perceptual structure and theprior influence the IB objec-
tive function. The irregular distribution of colours in per-
ceptual space (Figure 1(b)) influences the accuracy term
(Equation 2), through mc and m̂w . The prior p(c) influ-
ences both terms of the IB objective function: complex-
ity (Equation 1) and accuracy (Equation 2). Colours with
higher communicative need, i.e., higher p(c), will there-
fore be more dominant in the IB objective function
(Equation 3), and thus there will be greater pressure to
communicate those colours efficiently. Figure 4 illus-
trates this concretely, by showing how different priors
we explore in the next sections emphasize different
parts of perceptual colour space.

4. Characterizing communicative need

We explore three general classes of prior distribution,
each derived from a different principle for inferring
communicative need. First is the class of least

Figure 3. (Colour image online) (a) The basic communication model. A colour c is drawn from a prior distribution p(c) that represents
communicative need. The speaker observes c, mentally represents it by a distribution mc , and communicates this representation to the
listener by encoding it in a word w which is distributed according to an encoding naming distribution q(w|c). The listener receives w
and interprets (or decodes) it by constructing a mental representation m̂w . The complexity of the lexicon is determined by the encoder.
The accuracy of the lexicon is determined by the similarity between the listener’s and speaker’s mental representations. (b) The theor-
etical limit of achievable complexity-accuracy tradeoffs, defined by the set of optimal IB systems, and the tradeoffs achieved by the
colour naming systems of the WCS+ languages. Accuracy is inversely related to the expected distortion (Equation 2), such that
maximal accuracy corresponds to zero distortion. All WCS+ languages achieve near-optimal tradeoffs. Orange stars correspond to
the four languages shown in Figure 7, where they are ordered by complexity. Both figures are adapted from Zaslavsky et al. (2018).
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informative priors. This class aims to infer a prior
without making any assumptions about external
forces that may shape communicative need. The
second class is based on the idea that communicative
need is reflected in linguistic usage. The third class is
based on the assumption that communicative need
is reflected in colour statistics as encountered in the
visual world, estimated from natural images.

4.1. Least informative priors

A natural approach to obtaining a prior distribution
without any assumptions is by invoking the
maximum entropy (MaxEnt) principle (Jaynes, 1982).
The MaxEnt principle states that the most justified dis-
tribution is the one that maximizes uncertainty,
measured in terms of entropy. In our setting, in its sim-
plest form, this principle yields a uniform distribution
over colour chips. A uniform prior has been used
before to account for colour naming (e.g., Gibson
et al., 2017; Regier et al., 2015), and thus we consider
it here as a baseline. However, it is not clear whether
in fact all colours are equally needed for communi-
cation in natural settings.

An alternative approach (Zaslavsky et al., 2018) aims
to infer the prior directly from naming data, without
making specific assumptions about the forces that may
shape communicative need. This approach is based on
the capacity-achieving principle (Shannon, 1948). In
information theory, a channel is definedby a conditional
distribution (Cover & Thomas, 2006). Thus, any colour
naming distribution, p(w|c), can be interpreted as a

channel2 that takes a colour c as its input and outputs
a word w. The maximal amount of information that
can be transmitted over a channel is the channel’s
capacity, and the ideal prior for that channel is called a
capacity-achieving prior (CAP). In our setting, the CAP
for a given naming distribution maximizes the amount
of information the lexicon conveys about the observed
colour. Formally, it is defined by

pCAP(c) = argmax
p(c)

I(C; W), (4)

andcanbeobtainedusing theBlahut-Arimotoalgorithm
(Arimoto, 1972; Blahut, 1972). Note that this CAP ident-
ifies a prior that maximizes complexity (Equation 1) for
a given naming system, in contrast to the IB principle
in which complexity is minimized over all possible
naming systems for a given prior. Although these prin-
ciples are related, they are also importantly different:
the capacity-achievingprinciple is an optimality criterion
for the prior whereas the IB principle is an optimality cri-
terion for the naming system.

Given a colour naming distribution pl(w|c) for a
specific language l, we can now obtain a CAP for
that language, p(l)

CAP
(c), which captures the pattern of

communicative need for that language, inferred on
the basis of the capacity-achieving principle. We
then follow Zaslavsky et al. (2018) and average
together the CAPs across languages l in the WCS+
dataset, to obtain a single universal prior.3 The result-
ing prior, which we refer to as WCS-CAP, is shown in
Figures 4(a) and 5(a). Because this prior is estimated
from the WCS+ data, Zaslavsky et al. (2018) performed

Figure 4. (Colour image online) Illustration of how communicative need may interact with perceptual structure in shaping colour
naming. Each plot shows the 330 colour chips from Figure 1(b) as circles in CIELAB space, where the size of each circle is proportional
to the colour’s probability mass under four different priors defined in section 4. Each prior is a different distribution over perceptual
space, which may give rise to different colour naming systems.
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5-fold cross-validation and showed that WCS-CAP
does not overfit the data (see Table 1).

4.2. Linguistic usage

It seems likely that the frequency of use of particular
words in natural communication may reflect important
aspects of communicative need, and priors estimated
from corpus frequencies have been used to account
for cross-linguistic variation in semantic domains
other than colour (Kemp & Regier, 2012; Xu & Regier,
2014). However, a challenge for this approach is that
it is not always clear how to infer a distribution over
objects in the domain—colours, in our case—from
corpus statistics, because corpus statistics provide fre-
quencies only for words, and there are generally
more objects in the domain (here, colour chips) than
there are words (colour terms). Here we propose a
general solution for this problem by applying the
maximum entropy (MaxEnt) principle under constraints
derived from corpus data.

Suppose we are given the naming distribution
pl(w|c) for some language l, and we are also given
word frequencies, pl(w), from a corpus for that
language. For simplicity, assume that these word fre-
quencies correspond only to cases in which these
words are used for describing objects in the domain
universe U . Under this simplifying assumption, for
pl(w|c) and pl(w) to be consistent with each other, it
must hold that

∑
c pl(w|c)p(c) = pl(w). This consist-

ency requirement imposes a set of linear constraints
on the prior, and of all the prior distributions that
satisfy these constraints, we wish to select the one

with maximal entropy, where entropy is defined by
H(C) = −

∑
c p(c)logp(c). Formally, this gives the fol-

lowing optimization problem:

max
p(c)

H(C)

subject to
∑
c[U

pl(w|c)p(c) = pl(w), ∀w [ W.
(5)

This is a concave optimization problem, and can be
solved using standard tools.4

In principle, this corpus-based MaxEnt approach can
be applied on a language-specific basis, for every
language for which pl(w) can be obtained. However, it
is difficult to obtain such word frequencies for the
WCS languages, because large representative corpora
for these languages of non-industrialized societies do
not exist. For English, in contrast, this approach is tract-
able because both naming data and corpus data exist.
The English colour naming data collected by Lindsey
and Brown (2014) contain over 100 words used across
participants in their free-naming experiment. However,
most of these words were used by only a few partici-
pants (see Lindsey & Brown, 2014). These words tend
to be either rare, in which case their corpus frequencies
may not be reliable, or words that are used metaphori-
cally, in which case their frequencies are more likely to
reflect usages other than describing colours. Tomitigate
this problem, we based this prior on only the 11 basic
colour terms in English, which were used by all partici-
pants. We also obtained corpus frequencies for these
11 terms, as shown in Figure 6. The naming data and
corpus frequency of each basic colour term define the
constraints in Equation 5.

Figure 5. Prior distributions over the WCS grid. Each chip is coloured according to its probability mass (log-scale).
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The resulting prior, Eng-MaxEnt, is shown in
Figures 4(b) and 5(b). In contrast to WCS-CAP, this
prior is estimated only from the English colour
naming data and English corpus statistics, and thus it
is independent of the WCS languages. We explore
Eng-MaxEnt as a proposed approximation to a universal
prior, on the assumption that corpus statistics in English
may be shaped in part by universal communicative
forces. We leave the interesting question of language-
specific differences in usage and communicative need
for future research (but see Regier, Carstensen, & Kemp,
2016, for treatment of this idea in another domain).

4.3. Visual environment

A natural possibility is that communicative needmay be
shaped largely by the statistics of colours in the world
(e.g., Gibson et al., 2017; Yendrikhovskij, 2001). If this is
the case, then a prior derived from the distribution of
colours in the environment should provide a good
account of colour naming. One way to approximate
this distribution is from the statistics of colours in a
large dataset of natural images. For example, Yendri-
khovskij (2001) considered the total frequency of
colours in a set of natural images. Gibson et al. (2017)
also examined colour frequencies in natural images,
but they noted that not all occurrences may be equally
relevant for estimating need. Instead, they took as
their measure of communicative need what they
called the “salience” of particular colours: specifically,
the frequency of a colour’s appearance in objects that
people tend to talk about, dividedby theoverall total fre-
quency of that colour. Here we consider these two
approaches, and another that is based only on a
colour’s frequency of appearance in foreground
objects. This latter approach is based on the observation
that if colours that appear in useful objects have greater

communicative need, then this may hold regardless of
the visual background of these objects.

To evaluate these different image-based
approaches, we estimated (i) a prior based on the
total frequency (TF) of colours; (ii) a prior based on
the frequency of colours in foreground objects (FG);
and (iii) a salience-weighted (SW) prior, similar to
Gibson et al.’s approach but here based on the
colours corresponding to all WCS chips whereas
their analysis was based on a subset of these chips.
Colour frequencies were estimated from Microsoft’s
COCO dataset (Lin et al., 2014), which contains over
80,000 annotated images.5 The images were pro-
cessed as follows. First, to filter out black-and-white
images, only images with colourfulness index (Yendri-
khovskij, Blommaert, & de Ridder, 1998) above 0.2
were considered. Approximately 3% of the images
were excluded on this basis. Next, to avoid a bias
toward large images, 50,000 pixels were randomly
sampled from each image. These pixels were then
converted to CIELAB coordinates (Figure 1(b)) and
were classified as one of the WCS chips, or excluded
if they were not close to any of the WCS chips.6

Pixels with chroma less than the average chroma of
pixels in the image were compared to the achromatic
chips. Pixels with chroma above average were com-
pared to the chromatic chips with closest lightness
and hue values.

The resulting SW and FG priors are shown in
Figures 4 and 5. The TF prior is not shown because it
is fairly similar to the FG prior.7

5. Results

We assess the three classes of priors discussed above
by entering each prior into the IB colour naming
model, and evaluating how well the model with this

Figure 6. Frequencies of the 11 basic colour terms in English (case insensitive) from the Google n-gram (Michel et al., 2011) American
English dataset for the year 2008 with a smoothing factor of 3 (average across the three preceding years). Since the English naming data
from Lindsey and Brown (2014) were collected in the USA, this is a reasonably compatible corpus.
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prior accounts for the WCS+ data. We follow the same
quantitative evaluation method used by Zaslavsky
et al. (2018), which is based on two goodness-of-fit
scores:8 (i) an inefficiency score, which measures the
deviation from optimality of a given language’s
colour naming system; and (ii) a dissimilarity score,
which measures the dissimilarity in extension
between a given language’s colour naming system
and the corresponding optimal naming system pre-
dicted by the model. Lower values of these scores indi-
cate a better fit to the data.

Table 1 shows the quantitative results based on
these scores. WCS-CAP and Eng-MaxEnt achieve com-
parable scores, and outperform the other priors. A
qualitative inspection of the results (Figure 7) shows
that these priors predict slightly different solutions,

but also agree to a large extent on the structure of
the categories and resemble the actual systems. It is
striking that Eng-MaxEnt—a prior that is derived
only from English—is able to account so well for the
WCS languages, which are from non-industrialized
societies and the majority of which have fewer
colour categories than English. This result suggests
that there are general patterns of communicative
need that are shared across cultures, and that these
patterns can be inferred directly from linguistic data.
While it is possible that Eng-MaxEnt and WCS-CAP
also reflect perceptual structure, the influence of per-
ception on these priors would be indirect, mediated
via language use (Winter, Perlman, & Majid, 2018).
For completeness, we compared these results with
those obtained by using a capacity-achieving prior

Figure 7. (Colour image online) Contour plots of colour naming systems from four languages (data row, same as Figure 1(c)) and the
corresponding optimal systems which were predicted by the IB model under different priors. The variation shown for each model’s
prediction is caused by changes in the tradeoff parameter b that controls the location along the theoretical limit (see Figure 3(b)
and section 3). Results for WCS-CAP and the uniform prior are from Zaslavsky et al. (2018).

Table 1. Evaluation of possible communicative need distributions.
Motivation Data type Prior Inefficiency Dissimilarity

Baseline None Uniform 0.24 (±0.09) 0.39 (±0.12)
Least informative WCS+ WCS-CAP 0.18 (±0.07) 0.18 (±0.10)
Linguistic usage English naming & corpus data Eng-MaxEnt 0.19 (±0.09) 0.17 (±0.08)
Visual environment Foreground freq. FG 0.21 (±0.08) 0.31 (±0.12)

Total freq. TF 0.21 (±0.08) 0.34 (±0.14)
Colour salience SW 0.25 (±0.09) 0.40 (±0.12)

Notes: Inefficiency and dissimilarity scores are as defined by Zaslavsky et al. (2018). Reported scores correspond to averages across languages ± 1 SD. Lower values
are better, and the best scores are in boldface. Results for the two uninformative priors are from Zaslavsky et al. (2018), where the scores for WCS-CAP are
averages over left-out languages in 5-fold cross-validation.
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estimated only from English naming data, and not
those of any other language. This prior does not
produce as good a fit to the actual data as do Eng-
MaxEnt and WCS-CAP.

The relatively poor performance of the image-
based priors is somewhat surprising, especially given
that prior work (e.g., Gibson et al., 2017; Griffin, 2006;
Yendrikhovskij, 2001) suggested that image statistics
may play a central role in accounting for colour
naming. Looking more closely at the results from the
image-based priors may help to explain this seemingly
inconsistent outcome.

Consider first the TF and FG image-based priors.
They achieve similar scores and both perform better
than the SW prior and the uniform prior, but not as
well as the priors based on linguistic data (WCS-CAP
and Eng-MaxEnt). These results seem inconsistent
with the findings of Yendrikhovskij (2001), who
found that colours sampled from 630 natural images
form clusters in colour space that correspond
roughly to known universal tendencies in colour
naming. However, Steels and Belpaeme (2005) found
that categories generated by Yendrikhovskij’s
method are correlated with human colour categories
only slightly better than are categories derived from
uniform sampling of colours.9 In an attempt to more
completely explore the apparent tension between
our findings and those of Yendrikhovskij, we tried to
replicate the findings of Yendrikhovskij (2001) using
1000 random images from the COCO dataset. Our
analysis failed to replicate the qualitative results he
obtained. This negative outcome could be due to
the fact that we used a different set of images, or
that the distribution of images in the COCO dataset
is biased toward western cultures. However, there is
also a further potential explanation for why the TF
and FG frequencies do not perform well: they may
not give good estimates of communicative need.
Specifically, since most colours in natural images
have low saturation (e.g., Hendley & Hecht, 1949;
Steels & Belpaeme, 2005), the TF and FG frequencies
are biased toward the achromatic chips. In our ana-
lyses, we excluded colours that were not sufficiently
close to any of the WCS chips, but the bias toward
the achromatics seems inherent to the statistics of
colours in images in general, prior to any exclusion
or filtering: the density near the achromatic chips is
much higher than the density near the chromatic
chips. This implies that the TF and FG priors predict

greater communicative need for desaturated colours.
Such a tendency seems unlikely given that consensus
in colour naming, at least among English speakers, is
positively correlated with chroma, such that highly
saturated colours are named with highest consensus
(Jraissati & Douven, 2018).

Consider now the SW prior. This prior is not biased
toward desaturated colours. At the same time, it is
closer to uniform than the other priors (Figure 5), it
achieves scores similar to those of the uniform prior
(Table 1), and it also predicts systems qualitatively
similar to those predicted by the uniform prior
(Figure 7). This suggests that the SW prior may be
too close to uniform to accurately reflect communica-
tive need.

6. Discussion

The possibility that both perceptual structure and
communicative need may shape colour naming has
long been discussed in the literature. However percep-
tion has traditionally been the focus of much more
attention, and was incorporated first in computational
accounts of colour naming, while communicative
need remained an informal concept. Recently, this
picture has started to change: the notion of communi-
cative need has been cast formally as a prior over
colours, and there is increasing evidence for the
importance of this component. However, the factors
that may characterize and shape communicative
need have previously been only preliminarily
explored. We approached this problem by exploring
three major factors that may shape communicative
need: capacity constraints, linguistic usage, and the
visual environment. These factors were assessed
within an independently motivated computational fra-
mework that integrates need and perception, and that
predicts optimally efficient colour naming systems on
that basis.

Our findings may be summarized in two main
points. First, we found that different patterns of com-
municative need, instantiated as different priors, give
rise to quite different efficient colour naming
systems, given the same underlying perceptual struc-
ture. This finding further supports the idea that com-
municative need may have a substantial impact on
colour naming, beyond the influence of perception.
Second, we found that of the priors we considered,
those based on capacity constraints and linguistic
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usage provided the best fit to actual colour naming
systems observed across languages. These best-per-
forming priors were estimated from linguistic data,
whereas other priors—uniform and image-based
priors—did not account for the data as well. This
suggests that communicative need may be well-esti-
mated by the statistics of linguistic usage (Kemp &
Regier, 2012; Regier et al., 2016; Xu & Regier, 2014),
rather than by the statistics of the visual world to
which language refers.

The corpus-based maximum entropy method for
estimating need that we have presented here is
novel, to our knowledge, and seems noteworthy for
two reasons. First, it addresses the challenge of infer-
ring communicative need from corpus statistics with
minimal additional assumptions, and it can therefore
in principle be applied widely across semantic
domains. Second, while its performance is comparable
to that of the capacity-achieving prior based on mul-
tiple languages in our dataset, it achieves this based
on data from a single language. This suggests that
there are important aspects of communicative need
that are shared across languages, and that this
method can be used to infer them. At the same time,
we are not committed to the notion of an entirely uni-
versal prior. An important direction for future research
is to test howwell this corpus-basedmaximumentropy
approach generalizes across languages and across
domains, and to determine how and why communica-
tive need varies across cultures, environments, and
languages, beyond the simplifying assumption of a uni-
versal prior that we have made here.

Our findings do not imply that communicative
need is uninfluenced by the statistics of the visual
environment. Instead, they suggest that any
influence of visual environment may be distal, and
that language use may be a more direct reflection of
need. This is broadly consistent with Boas’ (1911,
p. 26) view that cross-language variation in semantic
categories “must to a certain extent depend upon
the chief interests of a people”: on this view, while
the environment may shape a people’s interests, it is
those interests that directly shape the semantic cat-
egories of a given language—and those interests are
presumably expressed through patterns of language
use. This suggests two linked processes of adaptation.
In the case of colour, colour naming may have
adapted to communicative need and the structure
of perceptual colour space—while need and

perception may themselves have adapted to natural
scene statistics (Shepard, 1994; Webster & Mollon,
1997), which may vary over time (Webster, Mizokami,
& Webster, 2007) and space (McDermott & Webster,
2012). Although we have focused here on forces that
shape colour naming, either directly or indirectly, it
is also known that colour naming may in turn shape
colour cognition and perception (Bae, Olkkonen,
Allred, & Flombaum, 2015; Gilbert, Regier, Kay, & Ivry,
2006; Kay & Kempton, 1984; Roberson, Davies, &
Davidoff, 2000; Winawer et al., 2007). Given the
many moving parts in this overall picture, we find it
striking that a universal perceptual colour space, and
a universal prior based only on English usage,
account for cross-language data as well as they do.
Future research can usefully explore why this is the
case, how far the universality extends, and when and
under what circumstances language- and culture-
specific forces dominate instead.

Notes

1. For simplicity, since it is assumed that each colour
invokes a unique mental representation, we will treat c
and mc interchangeably when the distinction between
them does not matter. For example, for any colour
naming distribution p(w|c) or prior p(c), it holds that
q(w|mc) = p(w|c) and p(mc) = p(c).

2. This naming channel is internal to the speaker, and it is
distinct from the communication channel between the
listener and speaker. The latter takes as input the word
produced by the speaker and outputs the word per-
ceived by the listener. The communication channel is
left implicit in Figure 3(a) because this channel is
assumed to be noiseless—i.e., the listener observes the
speaker’s word unaltered.

3. For compatibility with the analysis performed by
Zaslavsky et al. (2018), we followed their regularization
process and excluded fifteen languages from our quanti-
tative evaluation (Table 1). We also repeated the evalu-
ation process with all languages and obtained similar
results; thus the regularization process does not
influence our conclusions.

4. We used the python package cvxopt to solve this optim-
ization problem. In general, it is possible that the feasible
set would be empty, i.e. that there would be no prior that
satisfies the constraints. However, this is not the case in
our setting.

5. We considered the 2014 training dataset which contains
82,783 images. These images are annotated with object
boundaries for objects from 80 different categories.

6. Conversion from RGB to CIELAB coordinates was done
with the colorspacious python package, using illuminant
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C. For the achromatic chips, only pixels with
DE2 = (L∗)2 + (a∗)2 + (b∗)2 , 70 were considered. For
the chromatic chips, the comparison was based only
on lightness and hue values, and pixels for which the
square distance to the closest chromatic chip was
greater than 400 were excluded. These thresholds were
validated by manual inspection, to ensure that the con-
verted pixels are indeed perceptually similar to the orig-
inal ones.

7. The TF and the FG priors have similar structure and both
give the highest probability mass to the achromatic
colours. However, the FG prior gives less weight to the
achromatic chips than the TF prior does. In addition,
according to the FG prior, warm colours have higher
probability than cool colours, similar to the SW prior
we estimated, and consistent with the salience data of
Gibson et al. (2017).

8. These two measures correspond to 1l and gNID respect-
ively. See (Zaslavsky et al., 2018) for more detail.

9. We thank Delwin Lindsey for drawing our attention to
this connection.
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Abstract

The Information Bottleneck (IB) framework provides a principled and broadly applica-

ble approach for studying efficient compressed representations in artificial and biological

systems. However, a comprehensive mathematical understanding of the optimal IB rep-

resentations and the structural phase transitions they undergo via deterministic annealing

exists only in a few limited cases. Here, we address the case of symbolic, or discrete,

representations, which is particularly relevant to the emergence of language and abstract

representations more generally. We characterize the structural changes in the IB represen-

tations as they evolve via a deterministic annealing process; derive an algorithm for finding

critical points; and explore numerically the types of bifurcations and related phenomena

that occur in IB. This work extends the theoretical grounds for understanding optimal rep-

resentations within the IB framework.

1 Introduction

The Information Bottleneck (IB) framework [1] provides a principled approach for studying
efficient compressed representations in artificial and biological systems. In this view, efficient
representations should compress their inputs by maintaining the minimal amount of informa-
tion on the input that is required for making accurate predictions about a target variable. In
the past several years, there has been a surge of evidence for the wide applicability of IB in
multiple fields, including deep learning [2, 3, 4, 5], and machine learning in general [6, 7],
neuroscience [8, 9, 10], language [11, 12], and music [13]. However, a comprehensive math-
ematical understanding of the structure and evolution of the IB representations exists only in
very few cases, usually when Gaussian assumptions are made [7, 14].

The goal of this work is to extend this understanding to the case of discrete random vari-
ables, which induce symbolic IB representations. This setting is particularly relevant to the
emergence of language [12] and, more broadly, abstract representations. Structural phase
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transitions1 have previously been studied in related settings, such as clustering and classifi-
cation [15, 16], and to some extent also in the case of IB [17]. The present work goes beyond
these previous studies by (1) introducing order parameters that capture the evolution of the IB
representations; (2) deriving a novel algorithm for finding critical points in which the represen-
tations undergo a phase transition; and (3) exploring numerically the types of phase transitions
and related phenomena that occur in IB.

The remainder of this paper is structured as follows. In Section 2 we formulate the notion of
efficient compressed representations and ground it in the IB principle. In Section 3 we charac-
terize the evolutionary process of the IB representations and the structural phase transitions they
undergo. In Section 4 we present numerical simulations that demonstrate these phenomena.

2 Efficient compressed representations

2.1 Setting

Let X 2 X be a source random variable, Y 2 Y a target variable, and p(x, y) their joint
distribution. We assume p(x, y) is known, although in practical applications this distribution is
often estimated from data (see [6] for confidence bounds). For simplicity, assume that X and Y
are finite sets with sizes m and n respectively. For any two random variables, denote by4(X )

the (m � 1)-dimensional simplex of distributions over the elements of X , and by 4(Y)X the
set of conditional distributions of Y given X . That is, 4(Y)X = 4(Y) ⇥ · · · ⇥ 4(Y) is the
m-ary product of4(Y). We are interested in characterizing efficient representations of X .

Definition 1. A representation X̂ 2 X̂ is a stochastic function of X , defined by a conditional

distribution p(x̂|x) 2 4(X̂ )X . If X̂ is a discrete set of arbitrary symbols, then we say that X̂

is a symbolic representation of X .

In this work we consider symbolic representations, where |X̂ | is finite. From an information-
theoretic perspective, p(x̂|x) is a stochastic encoder and X̂ is the code alphabet. In addition,
Definition 1 implies that X̂ obeys the Markov chain Y �X � X̂ .

This general setup is broadly applicable. For example, in supervised learning settings [e.g.,
11, 6, 2], X would be an input of a classifier, Y would be a target label, and X̂ would be
an intermediate representation employed by the classifier. In unsupervised learning, this set-
ting corresponds to distributional clustering [e.g., 18, 19], namely assignment of the points
p(y|x) 2 4(Y) to clusters x̂ 2 X̂ . In statistics, Y may be an unknown parameter of a distribu-
tion py(x) = p(x|y), in which case X would be a sample from this distribution, and X̂ would
be a statistic of the sample. In the case of semantic systems [12], Y would be a set of rele-
vant features in the environment, X would be a referent defined by a distribution over features,

1We use the term “phase transitions” a bit loosely. Strictly speaking, the phenomena we study are bifurcations,
which are not necessary phase transitions in the physical sense.
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i.e.p(y|x), and X̂ would be a word that is used to communicate the referent.

2.2 The Information Bottleneck method

In all of the settings mentioned above, we may ask: what would be an optimal representa-
tion? Intuitively, a good representation should require minimal resources, while achieving
maximal predictive power. This intuition is formalized by the Information Bottleneck (IB)
principle [1]. According to IB, the complexity of the representation is measured by Ip(X; X̂),
which is roughly the number of bits that are required for representing X using X̂ . The infor-
mativeness, or accuracy, of the representation is measured by Ip(X̂; Y ), which is the amount of
relevant information about Y preserved by the representation. The optimal IB representations
minimize Ip(X; X̂), such that Ip(X̂; Y ) remains sufficiently high. Formally, this constrained
optimization problem can be solved by minimizing the Lagrangian

F�[p(x̂|x)] = Ip(X; X̂)� �Ip(X̂; Y ) , (1)

where � � 0 is the Lagrange multiplier for the constraint on Ip(X̂; Y ). � can also be consid-
ered as a tradeoff parameter, or inverse-temperature in analogy to statistical mechanics [15].
Given �, denote the optimal value of the IB objective by F⇤

� , and the optimal complexity and
accuracy by I�(X; X̂) and I�(X̂; Y ) respectively. The IB theoretical limit is defined by the
Pareto optimal tradeoffs (I�(X; X̂), I�(X̂; Y )) as a function of �. This parametric curve [20]
is called the information curve (see Figure 1A for example).

Tishby et al. [1] showed that a necessary condition for p�(x̂|x) to be a stationary point of
F� is that it satisfies the following self-consistent equations:

8
>>>>>><
>>>>>>:

p�(x̂|x) =
p�(x̂)

Z�(x)
exp (��D[p(y|x)kp�(y|x̂)])

p�(x̂) =
X

x2X
p(x)p�(x̂|x)

p�(y|x̂) =
X

x2X
p(y|x)p�(x|x̂)

, (2)

where Z�(x) is the normalization factor, also known as the partition function, and p�(x|x̂) is
obtained by applying Bayes’ rule with respect to p�(x̂|x) and p(x). We refer to representations
that satisfy (2) as IB representations. These representations can be found via the IB method
(Algorithm 1), which is a variant of the Blahut–Arimoto algorithm [21, 22].

2.3 Effective cardinality

The cardinality of an IB representation K(p�) is defined by the cardinality of its support,
Supp(p�) = {x̂ 2 X̂ : p�(x̂) > 0}. That is, K(p�) = |Supp(p�)|. The following proposition

102



Algorithm 1: IB [Tishby et al., 1999]
Input: p(x, y), initial mapping p0(x̂|x), and tradeoff � � 0
Output: Fixed point of F�

p(x̂|x) p0(x̂|x)
while p(x̂|x) not converged do

p(x̂) P
x p(x)p(x̂|x)

p(y|x̂) P
x p(y|x)p(x|x̂(x̂))

p(x̂|x) p(x̂)
Z(x)

exp (��D[p(y|x)kp(y|x̂)])

return p(x̂|x)

shows that there may be a simple transformation that reduces the cardinality of the representa-
tion without compromising its optimality given �.

Proposition 1. If p�(x̂|x) is an IB representation with cardinality K, and there are x̂1, x̂2 2
Supp(p�) such that p�(y|x̂1) = p�(y|x̂2), then there exists an IB representation p̃�(x̂|x) with

cardinality K � 1 such that F�[p̃�] = F�[p�].

Proof. We construct a representation p̃�(x̂|x) by merging x̂1 and x̂2. For all x and x̂ 6= x̂1, x̂2,
let p̃�(x̂|x) = p�(x̂|x). For x̂2 let p̃�(x̂2|x) = 0, and for x̂1 let p̃�(x̂1|x) = p�(x̂1|x) +

p�(x̂2|x). Given this construction, it is easy to verify that p̃� satisfies the IB equations (2), and
that F�[p�] = F�[p̃�]. In addition, since p̃�(x̂2) = 0, it holds that Supp(p̃�) = Supp(p�)\{x̂2},
which implies that K(p̃�) = K � 1, and this concludes the proof.

p� and p̃� are equivalent representations in the sense that they keep the same information
about X and Y . More generally, we define the equivalence class of p� by the set of all repre-
sentations p̃� that satisfy the IB equations (2) for the same value of �, and for which there exist
mappings ' : X̂ ! X̂ and  : X̂ ! X̂ such that p̃�(y|'(x̂)) ⌘ p�(y| (x̂)). In other words,
the equivalence class of p� is determined by the set of distributions over Y that it induces, i.e.,

{p(y) 2 4(Y) : 9x̂, p(y) ⌘ p�(y|x̂)} . (3)

Denote this equivalence class by [p�]. Here, we focus on representations with minimal cardi-
nality within their equivalence class.

Definition 2. The effective cardinality of an IB representation p� is

k(p�) = min
p̃�2[p� ]

K(p̃�).

We say that p�(x̂|x) is a canonical IB representation if k(p�) = K(p�).

In the remainder of this paper we assume that the IB representations are canonical, unless
stated otherwise. In particular, this implies that p�(y|x̂1) 6= p�(y|x̂2) for all x̂1 6= x̂2.
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Algorithm 2: Reverse Deterministic Annealing for IB (RDA-IB)
Input: p(x, y), scheduling �t > �t�1 > · · · > �1 � 0
Output: Fixed points for all �i

p0(x̂|x) Im (initialize)
for i = t, t� 1, . . . , 1 do

pi(x̂|x) IB (p(x, y), pi�1(x̂|x), �i) (initialize IB with the previous f.p.)

return {pi(x̂|x)}t
i=1

Notice that for � = 0, the global optimum is trivial, and any X̂ that is independent of X

will attain the minimum F⇤
0 = 0. In fact, this holds for all � 2 [0, 1], because I(X; X̂) �

I(X̂; Y ) due to the Data Processing Inequality [23]. A canonical representation in this case is
a constant x̂, and so the effective cardinality is k = 1. As � ! 1, the optimal mapping from
X to X̂ becomes deterministic, and the effective cardinality would be maximal. In particular,
if |X̂ | � |X |, then the global optimum is attained by any one-to-one mapping from X to
X̂ .2 In between these two extremes, as � gradually increases, the IB representations undergo
a sequence of structural changes, also called phase transitions or bifurcations, in which the
effective cardinality changes.

Intuitively, we can think of I�(X; X̂) as the logarithm of the effective cardinality because

k(p�) ⇡ 2I�(X;X̂) . (4)

This follows from the same typicality argument that Shannon applied in Rate-Distortion the-
ory [24], which implies that I�(X; X̂) is roughly the minimal number of bits that are needed
for encoding X using X̂ .

2.4 Reverse deterministic annealing

The IB optimization problem is non-convex, and thus Algorithm 1 is prone to converge to
local minima of F� . A common approach for mitigating this problem is based on the notion
of deterministic annealing [15, 16, and see also 25]. A deterministic annealing optimization
procedure starts with an initial solution for a low value of �, e.g., � = 0, for which finding
a globally optimal solution is trivial. Then, the solution is refined by invoking the iterative
algorithm while gradually increasing � (cooling down the system) according to some annealing
schedule. This process attempts to track the optimal solution as � increases from 0 to1.

Here, we are not only interested in the solution for � !1, but rather in the whole trajectory
which captures the evolution of the IB representations. In fact, if |X̂ | = |X |, then the solution
for � ! 1 is straight forward, as mentioned earlier. This suggests a reverse deterministic

annealing procedure, which starts with a bijective representation and a large value of �, and

2We assume here that a non-trivial minimal sufficient statistics (MSS) of X for Y does not exists. If it does,
then at the limit X̂ would be isomorphic to the MSS.
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then gradually decreases �. This procedure is summarized in Algorithm 2. The numerical
simulations in Section 4 are based on reverse deterministic annealing because we found it to be
more numerically stable than deterministic annealing, while yielding overall similar results.

3 Characterizing the evolution of the IB representations

In this section, we present several tools for characterizing the evolution of the IB representa-
tions and the structural phase transitions they undergo. More specifically, we propose several
measures that reflect these structural changes as � varies, and introduce an algorithm for find-
ing critical values of �. In addition, we analyze the structural phase transitions in the special
case where Y is a deterministic function of X .

3.1 Bifurcations in IB

Bifurcation diagrams are a powerful method for observing qualitative changes in the fixed
points of a dynamical system that occur when varying a bifurcation parameter [26]. In our case,
the dynamics is defined by the iterative process of Algorithm 1, the fixed points of this process
are the IB representations, and the bifurcation parameter is �. Typically, bifurcation diagrams
show the fixed points of the system as a function of the bifurcation parameter. However, the
IB fixed points are usually high-dimensional distributions, and so it is not always clear how to
observe their bifurcations. Here we discuss how to address this issue in two cases: (1) when Y

is binary, and (2) in the more general case of discrete variables.

3.1.1 Centroid bifurcations

We have shown in Section 2.3 that the set {p(y) 2 4(Y) : 9x̂, p(y) ⌘ p�(y|x̂)} defines the
equivalence class [p�]. This implies that it is sufficient to consider p�(y|x̂) as a function of �,
instead of p�(x̂|x). In the case in which Y is binary, this reduces to a single parameter for each
x̂, namely p�(y = 1|x̂). We refer to this type of bifurcation diagram as the centroid bifurcation

diagram, because p�(y|x̂) can be viewed as the cluster centroids of the points p(y|x) 2 4(Y)

under the clustering p�(x̂|x).
Figure 1D shows an example of this type of bifurcation diagram. For � = 1 there is only

one possible value, p�(y = 1|x̂) = 0.5, which corresponds to the prior distribution p(y). This
fixed point remains stable (and optimal) also for � greater than 1, but smaller from some critical
value �0. The first bifurcation occurs at �0, when the prior centroid splits into two centroids
and the effective cardinality increases. It is easy to verify that p�(y|x̂) = p(y) remains a fixed
point of the IB equations even for � > �0, by simply substituting this solution in (2). However,
this fixed point loses its stability at �0 and is no longer globally optimal after that point. This
type of phase transition is analogous to a pitchfork bifurcation [26]. A second critical point can
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Figure 1. Characterization of the evolution of IB representations in an illustrative example. Here, Y
is binary, X and X̂ are trinary, p(x) is uniform, and p(y|x) is shown by the leafs of the bifurcation
tree in panel D. The red points in all panels correspond to the two critical points that were found by
Algorithm 3. A. Normalized information curve. B-C. Bifurcations of the (normalized) order parameters
IX(x̂) and IY (x̂) respectively. The expected values over x̂, i.e. IX and IY , are shown by the black
curves. D. Centroid bifurcation diagram. E. Evolution of ��1

2 (x̂) for each x̂, where �2(x̂) is the second
largest eigenvalue of C�,x̂

Y . The black curve shows �. F. Closer view of ��1
2 (x2) (red curve in panel E)

and � (black curve in panel E) near the two critical points. Black arrows show iterations of Algorithm 3
in which �2 is computed given � (vertical arrows) and then � is updated from �2 (horizontal arrows)
until convergence. See main text for more detail.

also be seen in Figure 1D, in which another split occurs. The effective cardinality after this
split is K = 3, and since in this case |X̂ | = 3, another bifurcation after this point is impossible.

3.1.2 Informational bifurcations

Centroid bifurcation diagrams are useful when Y is binary, but are difficult to visualize when
|Y| > 2. Therefore, we propose an alternative approach that can be applied in the more general
case of discrete variables. To this end, we define two informational measures that reflect the
structural changes in IB as a function of �.

Definition 3. Given an IB representation p� for some � � 0, the point-wise information of
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x̂ 2 Supp(p�) about X or Y , denoted by I�
X(x̂) or I�

Y (x̂) respectively, are defined as

I�
X(x̂) = D [p�(x|x̂)kp(x)] (5)

I�
Y (x̂) = D [p�(y|x̂)kp(y)] , (6)

where D[·k·] is the Kullback-Leibler divergence. These measures are undefined for x̂ /2 Supp(p�).

Notice that before the first phase transition, i.e. for � < �0, if these measures are defined
then necessarily I�

X(x̂) = 0 and I�
Y (x̂) = 0. At a critical point �x̂ after which x̂ 2 Supp(p�),

these two informational measures become non-negative. We refer to these measures as order

parameters, as they are indicative of structural changes in the representation. Note that

I�(X̂; Y ) = E
x̂⇠p�(x̂)

[I�
Y (x̂)] (7)

and similarly, I�(X; X̂) = E[I�
X(x̂)]. In this sense, these two informational order parameters

compose the information curve.
Figure 1B and Figure 1C show the changes of these order parameters as a function of

log(�), for the same illustrative example considered in Section 3.1.1. We refer to these types
of diagrams as informational bifurcation diagrams. The structural changes of the IB represen-
tations, directly observed in Figure 1D, are also reflected in the informational bifurcation dia-
grams, in which cardinality changes are accompanied by an emergence of an order parameter.
This order parameter corresponds to the x̂ that has been added to Supp(p�). These structural
changes are also reflected in the expected values of the order parameters (black curves in Fig-
ure 1B-C), i.e., I�(X; X̂) and I�(X̂; Y ), which have discontinuous derivatives with respect to �
at the critical points. The following proposition shows that these discontinuities occur exactly
at the same values of �.

Proposition 2. @
@�

I�(X; X̂) = � @
@�

I�(X̂; Y ).

Proof. Substituting the explicit form of p�(x̂|x), as given by (2), in I�(X; X̂) gives

I�(X; X̂) =
X

x,x̂

p(x)p�(x̂|x) (��D[p(y|x)kp�(y|x̂)]� log Z�(x))

= �E
x

[log Z�(x)]� �
⇣
I(X; Y )� I�(X̂; Y )

⌘
,

where the second step follows from Lemma 1 in the Appendix. Therefore, the derivative with
respect to � is

@

@�
I�(X; X̂) = � @

@�
E
x

[log Z�(x)]�
⇣
I(X; Y )� I�(X̂; Y )

⌘
+ �

@

@�
I�(X̂; Y ).

Lemma 2 in the Appendix shows that @
@�

Ex [log Z�(x)] = I�(X̂; Y ) � I(X; Y ). Substituting
this in the equation above concludes the proof.
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Another implication of Proposition 2 is that the discontinuities in @
@�

I�(X; X̂) and @
@�

I�(X̂; Y )

coincide with Ehrenfest’s definition of second-order phase transitions [27]. According to Ehren-
fest, a second-order phase transition occurs if the second order derivative of the free energy F⇤

�

is discontinuous, but not the first order derivative. The following corollary shows that the n-th
order derivative of F⇤

� is given by the (n� 1)-th order derivative of �I�(X̂; Y ).

Corollary 1. @
@�

F⇤
� = �I�(X̂; Y ).

Proof. This follows directly from Proposition 2 because taking the derivative of F⇤
� with re-

spect to � gives

@

@�
F⇤

� =
@

@�
I�(X; X̂)� � @

@�
I�(X̂; Y )� I�(X̂; Y ) .

Therefore, if the first-order derivative of I�(X̂; Y ) is discontinuous, then so is the second-
order derivative of F⇤

� . If I�(X̂; Y ) is continuous in �, then this corresponds to Ehrenfest’s
second-order phase transition, and otherwise to a first-order phase-transition. Furthermore,
proposition 2 and corollary 1 suggest that in practice it is sufficient to consider only I�

Y (x̂) as
the order parameter. This conclusion is further supported by lemmas 3 and 4 in the Appendix,
which show more precisely how the two order parameters and their derivatives are related.

3.2 Finding critical points

Thus far we have showed that the evolution of IB representations is reflected in a set of order
parameters, O = {I�

Y (x̂) : x̂ 2 Supp(p�), � � 0}. These parameters capture the evolutionary
trajectory and the critical values of � in which second order phase transitions occur. A natural
question is then: Given a joint distribution p(x, y), what are the values of these critical points?
To address this question, we propose an algorithm for finding such points. We refer to this
algorithm as Criticality Search (Algorithm 3). First, we derive a necessary condition for a
second-order phase transition, which will form the basis of the algorithm.

Following a similar argument as in [15], we consider small perturbations of the IB rep-
resentation near a critical point. At a critical point in which a cluster splits continuously,
there exist non-trivial perturbations h�̃(x, x̂) such that for all �̃ � �, in a small vicinity of
�, it holds that p̃�(x̂|x) = p�(x̂|x) + h�̃(x, x̂) satisfies the IB equations (2) for �̃. Assuming
that the right derivatives of h�̃(x, x̂) and p�̃(x̂|x) with respect to �̃ exist and are non-zero at
�̃ = �, then rh�̃

log p�̃(x̂|x)
��
�̃=�

is well-defined, and so are these derivatives for log p�̃(x|x̂)

and log p�̃(y|x̂). As in [15], we neglect the influence of inter-cluster interactions, which yields
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in our case the approximation

ux̂,�[x] ,
X

x0

@log p�(x|x̂)

@h�(x0, x̂)
⇡ �

X

y

p(y|x)
X

x0

@log p�(y|x̂)

@h�(x0, x̂)
(8)

vx̂,�[y] ,
X

x0

@log p�(y|x̂)

@h�(x0, x̂)
=
X

x

p(y|x)p�(x|x̂)

p�(y|x̂)

X

x0

@log p�(x|x̂)

@h�(x0, x̂)
. (9)

The coupled equations (8)-(9) can be re-organized and simplified as follows:

ux̂,�[x] ⇡ �
X

y

p(y|x)
X

x0

p(y|x0)p�(x0|x̂)

p�(y|x̂)
ux̂,�[x

0] (10)

vx̂,�[y] ⇡ �
X

x

p(y|x)p�(x|x̂)

p�(y|x̂)

X

y0

p(y0|x)vx̂,�[y
0] . (11)

This gives two non-linear eigenvector conditions for a cluster split,

(��1I � C�,x̂
X )ux̂,� = 0 (12)

(��1I � C�,x̂
Y )vx̂,� = 0 , (13)

where C�,x̂
X is a |X |⇥ |X | matrix defined by

C�,x̂
X [x, x0] =

X

y

p(y|x)p(y|x0)p�(x0|x̂)

p�(y|x̂)
,

and C�,x̂
Y is a |Y|⇥ |Y| matrix defined by

C�,x̂
Y [y, y0] =

X

x

p(y|x)p�(x|x̂)p(y0|x)

p�(y|x̂)
.

For brevity, we simplify the notation by omitting the explicit reference to � and x̂ when their
actual values are implied or can be arbitrary. It follows that under our assumptions, a necessary
(approximated) condition for a second-order phase transition that involves x̂ is that ��1 is
an eigenvalue of C�,x̂

X and C�,x̂
Y . We note that the condition on CX is closely related to the

bifurcation analysis of [17]. Next, we show that both CX and CY are stochastic matrices with
the same non-zero eigenvalues.

Proposition 3. CY and CX have the same non-zero eigenvalues, and their largest eigenvalue

is always 1 with 1 as an eigenvector.

Proof. The first part follows from the fact that for any two m ⇥ n real matrices, A and B, it
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holds that AB> and A>B have the same eigenvalues. For any given � � 0 and x̂ 2 X̂ , let

A[x, y] = p(y|x)

B[x, y] =
p(y|x)p�(x|x̂)

p�(y|x̂)
.

It is easy to verify that CX = AB> and CY = B>A. Next, we will show that CX and CY are
stochastic matrices. All the values in these matrices are clearly positive, and so it remains to
show that the rows sum up to 1. Notice that B[x, y] = p�(x|x̂, y), and thus

X

x0

CX [x, x0] =
X

x0

X

y

p(y|x)p�(x
0|x̂, y) = 1

X

y0

CY [y, y0] =
X

y0

X

x

p(y0|x)p�(x|x̂, y) = 1 .

It follows from the Perron–Frobenius Theorem that for both CX and CY , the largest eigenvalue
is always 1 with eigenvector 1.

An immediate conclusion from Proposition 3 is that it is sufficient to find the eigenvalues
only for the lower dimensional matrix, which is typically CY . Furthermore, this criticality
condition becomes particularly simple when Y is binary.

Corollary 2. Assume |Y| = 2, then a necessary condition for a phase transition at � is that

there is some x̂ 2 X̂ for which � = det(C�,x̂
Y )�1.

Proof. For 2 ⇥ 2 stochastic matrices, the first eigenvalue is �1 = 1 and the second eigenvalue
�2 is given by the determinant. Therefore, for a binary Y it holds that �2(x̂) = det(C�,x̂

Y ),
which implies that a necessary condition for (13) is � = det(C�,x̂

Y )�1.

Another conclusion from Proposition 3 is that the criticality condition cannot hold for
� < 1, because the largest eigenvalue is always 1. This is consistent with the fact that the
first critical point �c0 is necessarily greater or equal than 1 (see Section 2.3). For 1  �  �c0 ,
any trivial representation for which p(x|x̂) = p(x) and p(y|x̂) = p(y) is optimal, yielding
C0

Y [y, y0] =
P

x p(x|y)p(y0|x) which is independent of � and x̂. Therefore, finding �c0 amounts
to finding the eigendecomposition of C0

Y . For � > �c0 , C�,x̂
Y may vary with � resulting in the

self-consistent condition ��1 2 Eig(C�,x̂
Y ) for criticality, where Eig(C�,x̂

Y ) is the set of eigenval-
ues of C�,x̂

Y . Therefore, finding critical points after �c0 is no longer a simple eigendecomposition
problem. To address this problem, we propose the Criticality Search algorithm.

3.2.1 Criticality Search

Criticality Search (Algorithm 3) is an iterative algorithm that finds candidate values of � that
satisfy the self-consistent criticality condition. It starts with an initial guess �c(x̂) = �0, com-
putes the eigenvalues of CY (assuming Y is the lower-dimensional variable), and then checks
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the criticality condition. If the condition is not met, the algorithm picks another candidate by
making an educated guess:

�new
c (x̂) = min{��1(x̂) : � 2 Eig(C�c,x̂

Y ),� 6= 1} . (14)

When Y is binary, this guess simply becomes �new
c (x̂) = det(C�,x̂

Y )�1. This process is repeated
for each x̂ until a point �c(x̂) that satisfies the condition is found, or when � is large enough
such that a maximally-informative point is reached, i.e. when I�(X̂; Y ) = I(X; Y ).

The algorithm is demonstrated by the simulations of Figure 1. The red points in all pan-
els correspond to the two critical points found by the algorithm. It can be seen that these
points correspond to the structural phase transitions observed in the centroid bifurcation dia-
gram (Figure 1D) and in the informational bifurcation diagrams (Figure 1B-C). The iterations
of the algorithms are demonstrated in Figure 1F. This figure shows a run that was initialized
with �0 slightly larger than the first critical point. It converged to the second critical point
for x̂2 by iterating between the red curve, which corresponds to ��1

2 (x̂), and the black curve,
which corresponds to �. The fixed points of this iterated map are precisely the points in which
the criticality condition is met. While our criticality condition only approximates a necessary
condition for a phase transition, in all our numerical simulations the algorithm converged to
actual critical points. This suggests that the condition we derived is a good approximation. In
addition, we conjecture that while it is possible that the condition is met at non-critical points,
these points might be unstable fixed points of the algorithm.

3.3 The deterministic case

To complete our characterization of the IB phase transitions, we discuss the special case in
which Y is a deterministic function of X . This case exhibits qualitatively different behavior
compared to cases in which p(y|x) > 0 for all x and y, and has recently been explored in the
context of deep learning [28].

First, we argue that we can consider without loss of generality the case in which p(y|x)

is deterministic and defines a one-to-one mapping from X to Y . That is, for every x there
is a unique value y(x) such that p(y0|x) = �y0,y(x). Otherwise, if there exist x1, x2 such that
y(x1) = y(x2), we can replace both of them by a single value x1,2 such that y(x1,2) = y(x1)

and p(x1,2) = p(x1) + p(x2). This does not change the structure of the problem, that is, the IB
clustering problem discussed in Section 3.1.1 remains the same. This also implies that we may
assume without loss of generality that |X | = |Y|.

In this case, I(X; X̂) = I(X̂; Y ) and the IB objective function becomes

F�[p] = (1� �)Ip(X̂; Y ) .

There are three different regimes for � in this case: (i) when � < 1, the solution is the same
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Algorithm 3: Criticality Search
Input: p(x, y), initial p0(x̂|x), and �0

Output: Candidate critical points
for x̂ 2 X̂ do

p(x̂|x) p0(x̂|x) (initialize)
�c(x̂) �0

�c  0
while �c(x̂) 6= ��1

c do
p(x̂|x) IB (p(x, y), p(x̂|x), �c(x̂)) (update encoder)
CY  B>A (update CY )
U, D = EVD(CY ) (eigendecomposition of CY )
L {�i : �i = Dii, 8i = 1, . . . , n} \ {1}
if 9� 2 L such that �c(x̂) = ��1 then

�c  � (found a candidate for x̂)
else if Ip(X̂; Y ) = I(X; Y ) then

�c(x̂) 1 (no candidates were found for x̂)
continue

else
�c(x̂) min

�2L
��1 (educated guess for the next iteration)

return �c(x̂), 8t 2 X̂

as in the general case, i.e. it is the trivial solution for which I(X̂; Y ) = 0; (ii) when � = 1,
F�[p] = 0 for all p(x̂|x), which means that any representation p(x̂|x) would be equally good;
(iii) when � > 1, minimizing F�[p] becomes equivalent to maximizing Ip(X̂; Y ). The solution
in this regime is equivalent to the solution when � ! 1, and so the optimal representation
would be a deterministic mapping from X to X̂ . Therefore, in this regime, the parameter that
shapes the optimal representations is the hard constraint on |X̂ | rather than �.

Because ��1 is the slope of the information curve [20], the curve in the deterministic case
is linear with slope 1 (or piecewise linear, as noted also in [28], if we relax the assumption
that y(x) is a bijective function, in which case the curve becomes flat once H(Y ) is reached).
We identify, contra to [28], a sequence of structural phase transitions along this line, which are
characterized by the solutions to the following optimization problems for K = 1, . . . , |X |:

max
p

Ip(X̂; Y )

such that Supp(p)  K .

These problems are NP-Hard, although in some cases (e.g., K = |X̂ |) they are tractable.
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4 Numerical examples

In this section we explore numerically (a) the types of structural phase transitions that may
occur in IB; (b) related phenomena such as critical slowing down; and (c) the influence of
p(x, y) on the evolutionary trajectory of the representations. We do so by considering several
numerical examples that are designed to be as simple as possible and at the same time convey
important insight about the evolutionary trajectory of the IB representations.

4.1 Sensitivity to the source distribution

We begin by exploring the influence of the source distribution p(x) on the evolution of the
representations. To this end, we fix p(y|x) and vary only p(x). We take Y 2 {0, 1} and
trinary X and X̂ . We define p(y|x) by p(y = 1|x1) = 0.25, p(y = 1|x2) = 0.48, and
p(y = 1|x3) = 0.75. The choice of p(y|x2) is deliberately meant to break the symmetry in
this example. The symmetric case will be explored in the next section. We consider four joint
distributions defined by p(y|x) and the following source distributions:

p1(x) =
⇣
0.45 0.1 0.45

⌘

p2(x) =
⇣

1
3

1
3

1
3

⌘

p3(x) =
⇣
0.18 0.64 0.18

⌘

p4(x) =
⇣
0.1 0.8 0.1

⌘
.

For each joint distribution pi(x, y) = pi(x)p(y|x), we evaluated the evolutionary trajectory
of the IB representations via Algorithm 2, the corresponding centroid bifurcation diagram, and
the evolution of the second eigenvalue of C�,x̂

Y for all x̂. The results are shown in Figure 2.
It can be seen that in all four cases there are two critical points. At these points, the effective
cardinality increases, which is reflected in the emergence of a new distinct value in the centroid
bifurcation diagrams (Figure 2A). Note that the effective cardinality corresponds to Supp(p�)

only when the representation is canonical. For p3 and p4, all the representations found by Algo-
rithm 2 are canonical, and therefore at the critical points Supp(p�) changes. This can be seen
in Figure 2B, where p�(x̂) becomes positive for some x̂.

Figure 2C shows that, as expected based on the theoretical analysis of Section 3, �2(x̂)

coincides with ��1 at critical points in which centroids splits continuously (e.g., the first phase
transition for p1). Interestingly, Figure 2A reveals that not all phase transitions correspond to
continuous centroid splits (e.g., the second phase transition for p1). However, even in these
discontinuous cases �2(x̂) seems to be indicative of the phase transition because it tends to
reache ��1 at those critical points.

Finally, we observe a critical slowing down phenomenon near the phase transitions, in
which the convergence time of the IB iterations diverges (Figure 2D). This phenomena has
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Figure 2. Numerical simulations with asymmetric distributions. The i-th column corresponds to the set
of results for pi(x, y). Colored curves (blue, orange, green) in panels A-C correspond to different values
of x̂. A. Centroid bifurcation diagrams. B. p�(x̂) as a function of log(�). C. The evolution of the second
eigenvalue �2(x̂) as a function of log(�). D. Log convergence time of Algorithm 1, i.e., the number of
IB iterations, as a function of log(�).

been known to happen near phase transitions in other settings [29, 30], and further analysis of
this phenomena in the case of IB is left to future research.

This numerical exploration shows that the source distribution may have substantial influ-
ence on the location of the critical points, as well as their type. For example, bifurcations that
appear as continuous splits, similar to pitchfork bifurcations, may change to what appears as
a discontinuous emergence of a new centroid. In addition, our simulations suggest that the
IB phase transitions may also be characterized by critical slowing down, in addition to the
characterization of Section 3.

4.2 Symmetric distributions

Next, we repeat the same analysis with symmetric distributions. We constructed these distribu-
tions by taking the four asymmetric distributions from before and changing p(y = 1|x2) = 0.5.
Figure 3 shows the results in this case. Not surprisingly, the bifurcation diagrams are symmet-
ric for these distributions (Figure 3A). In addition, these examples demonstrate that p(x) may
influence not only the type of bifurcations but also their number. For p1 and p2 there are two
critical points, as before, however for p3 and p4 there is only one critical point. Furthermore,
for p3 and p4 we observe a trinary split in which the effective cardinality jumps from k = 1 to
k = 3. This appears to happen either via a continuous split (as in p3) or via a discontinuous
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Figure 3. Numerical simulations with symmetric distributions. The i-th column corresponds to the set
of results for pi(x, y). Colored curves (blue, orange, green) in panels A-C correspond to different values
of x̂. In some cases the blue and green curves overlap. A. Centroid bifurcation diagrams. B. p�(x̂) as
a function of log(�). C. The evolution of the second eigenvalue �2(x̂) as a function of log(�). D. Log
convergence time of Algorithm 1, i.e., the number of IB iterations, as a function of log(�).

emergence of a new value (as in p4). In the continuous case, which corresponds to the assump-
tions of our criticality condition, �2(x̂) = ��1

c for all three clusters at the same critical point
(intersection of the colored curves with the black curve in Figure 3C, p3). This behavior is less
clear is the discontinuous case (Figure 3C, p4). In both cases, however, we observe critical
slowing down near the phase transition (Figure 3D).

4.3 Water filling in Bayesian networks

In this final example, we extend our analysis to the multivariate case and illustrates a potential
application of our approach to design principles for neural network architectures. Specifically,
we use the methods of Section 3, but instead of the standard IB method we apply its multivariate
extension [31, Multivariate IB (MVIB)]. MVIB takes the multi-information, which is defined
for a set of random variables Z = (Z1, . . . , Zn) ⇠ p(z1, . . . , zn) by

I(Z) = D

"
p(z1, . . . , zn)

����
nY

i=1

pi(zi)

#
, (15)

as a natural extension of mutual information in the multivariate case. The MVIB objective
function is then I(X, X̂) � �I(X̂,Y), where X, Y and X̂ are multivariate variables and the
statistical dependencies between them are defined by a Bayesian network.
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Figure 4. Numerical simulations in the multivariate case. A. The Bayesian network used in our simu-
lations. B. The multivariate information curve. C. Information that the hidden representation maintains
about the input. Note that for every � it holds that I(X, X̂) = I(X; H1) + I(X; H2). D. Information
about the ground truth Y extracted by the hidden representation.
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Figure 5. Evolution of the hidden representation. A. Bifurcation diagrams for the H1 encoder (left) and
H2 encoder (right). B. Centroid bifurcation diagram.

To demonstrate our approach numerically, we consider the Bayesian network of Figure 4A,
where X = (X1, X2) is the input, X̂ = H = (H1, H2) is the hidden layer of the network, and
Ŷ is the network’s prediction defined such that p(Ŷ = y|x̂) = p(Y = y|x̂). For simplicity,
we assume that all variables — X1, X2, H1, H2, Y , and Ŷ — are binary. We take p(x) to
be uniform, and define p(y|x) by p(y = 1|x = (0, 0)) = 0.8, p(y = 1|x = (0, 1)) = 0.6,
p(y = 1|x = (1, 0)) = 04, and p(y = 1|x = (1, 1)) = 0.2.

Figure 4 shows the multivariate information curve for this example, and the information
that the hidden representation maintains about the input X and the desired output (or ground
truth) Y . It is easy to verify that in this case I(X,H) = I(X; H1) + I(X; H2). Figure 5 gives
a more detailed view of the evolution of the hidden representation as a function of �.

These result demonstrate a water filling phenomenon for the hidden units of the networks,
analogous to the water-filling phenomena in rate–distortion theory [23]. When � < �1, both
hidden units are independent of the input (Figure 5A), and do not maintain any information
about X or Y (Figure 4C-D). The prediction of the network (Figure 5B) in this regime is based
on the prior p(y), which is uniform in this case. This means that the canonical hidden represen-
tation is constant, and thus both hidden units are redundant. When �1 < � < �2, only H1 keeps
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information about the input and output. In this case H2 is redundant and can be eliminated from
the network. When � > �2, both units are informative, and their contribution is complemen-
tary. Namely, H1 evolves to represent X1 and H2 evolves to represent X2. Therefore, in this
regime both units are necessary for the optimal architecture uses both of them.

5 Conclusions

In this work, we have cast the notion of efficient compressed representations in terms of IB,
and characterized how these efficient representations evolve via a deterministic annealing pro-
cess. The main contributions of this work are: (1) introduction of order parameters that capture
the evolution of the IB representations and the structural phase transitions that they undergo;
(2) derivation of an algorithm for finding critical points; and (3) numerical exploration of the
phase transitions and related phenomena that occur in IB. Important directions for future re-
search include an extension of our analysis to continuous variables; characterization of the
critical slowing-down phenomenon in IB, and possibly methods for overcoming the computa-
tional problem this phenomenon raises. In addition, while the examples we considered here
are merely illustrative, they demonstrate general principles that may apply to several fields. For
example, some of these methods have already been applied to language evolution [12] and deep
neural networks [2, 4]. This work lays out some of the theoretical grounds for extending these
applications, as well as applying this approach more broadly.
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Appendix

In this section we prove several technical lemmas that were used in our main analysis.

Lemma 1. Let Y � X � X̂ be a Markov chain such that p(y, x, x̂) = p(x, y)p(x̂|x), and let

p(y|x̂) be the corresponding conditional distribution of Y given X̂ . Then

E
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The first term is zero (assuming p�(x̂) is differentiable w.r.t. �) because
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and so is the second term, for similar reasons:
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It follows that
@

@�
E
x

[log Z�(x)] = � E
x,x̂

[D[p(y|x)kp�(y|x̂)]] ,

and applying Lemma 1 to the right hand side of this equation concludes the proof.

Lemma 3. Let p� be a canonical IB representation and x̂ 2 Supp(p�), then

I�
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x
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where IY (x) = D[p(y|x)kp(y)].

Proof. This follows from substituting (2) in the definition of I�
X(x̂), i.e.
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Lemma 4. Let p� be a canonical IB representation and x̂ 2 Supp(p�), then
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Proof. The first part follows from differentiating (16) with respect to �. For the second part,
notice that Proposition 2 implies that
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x


@
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�
,

and therefore Ex̂ [g�(x̂)] = 0.
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Chapter 8

General Discussion

This thesis has identified several fundamental information-theoretic principles that may under-
lie human semantic systems and their evolution. The first principle is the Information Bot-
tleneck (IB, Tishby et al., 1999), that arises as the link between semantic representations and
Shannon’s Rate–Distortion theory (Shannon, 1948, 1959). We have shown that the IB princi-
ple characterizes human semantic systems by first testing its theoretical predictions on cross-
linguistic data in the domain of color naming, and then generalizing this account to two qualita-
tively different semantic domains, household containers and animal taxonomies. Furthermore,
we have tested the evolutionary predictions of the IB principle on recent diachronic color nam-
ing data from one language, providing the first direct evidence, to our knowledge, that color
naming may evolve under pressure to maintain efficient coding schemes. These findings sug-
gest that efficient coding under limited resources, as defined by IB, may be a major force in the
evolution of semantic systems.

Two additional information-theoretic principles that have been identified in this thesis are
the capacity-achieving principle and the maximum-entropy (MaxEnt) principle, which aid in
characterizing the forces that may shape communicative need and the influence of need on se-
mantic systems. We have used the capacity-achieving principle to reveal new evidence that
communicative need may shape color naming in interaction with perception, as opposed to tra-
ditional accounts that focused mainly on perception and recent accounts that focused mainly
on need. This principle was also used in Part I, within the IB framework, as a theoretically-
motivated method for estimating communicative need. We have proposed the MaxEnt principle
with corpus constraints as another principled domain-general method for estimating commu-
nicative need, which considers the influence of linguistic usage rather than capacity constraints
or the statistics of the visual environment. Our systematic evaluation of these factors in the
domain of color naming suggests that linguistic usage may be the most relevant factor for char-
acterizing the communicative need.

In the third part of this thesis, we have extended the mathematical foundations of the IB
framework, which lie at the basis of our approach to semantic systems. We have characterized
the structural changes in the IB representations as they evolve via a deterministic annealing
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process; derived an algorithm for finding critical points; and explored numerically the types of
bifurcations and related phenomena that occur in IB. This set of analytical results is central to
our proposal that semantic systems may evolve along the IB theoretical limit via an annealing
process, and many of the phenomena studied in Part III have been observed at a larger scale
in the model simulations in Part I. Particularly noteworthy in this context is our simulation of
the evolution of the IB color naming systems (see Chapter 2, Figure 5 and Movie S1), which
demonstrates how color naming may evolve in an annealing process, undergoing a sequence
of structural phase transitions. Additionally, in Part III we have began to explore how com-
municative need — that is, p(x) in the standard IB formulation — may influence the structure
and evolution of the optimal IB systems in carefully designed domains. This resonates with
our systematic evaluation of several need distributions in Chapter 6, and suggests that study-
ing small synthetic domains may help to gain a better understanding of the relation between
communicative need, efficient compression, and the structure of semantic categories.

While our motivation in this thesis is to account for linguistic phenomena, the analytical
tools we have developed in Part III apply to the IB framework in general. Therefore, these tools
may be useful also in other important application of IB, for instance in deep learning (Tishby
and Zaslavsky, 2015; Shwartz-Ziv and Tishby, 2017).

The theoretical framework laid out in this thesis opens several important avenues for future
research. A few examples are outlined below.

• Additional semantic domains. The generality of the principles we invoke suggests
that they may apply more broadly across semantic domains. Therefore, an important
direction for future research is to further test the extent to which these principles apply to
domains beyond those explored in this thesis. This includes further testing our approach
to communicative need across semantic domains, as well as further testing the predictions
of the IB principle. For the latter, one major challenge is that it is not always clear how
to specify the underlying representation of the domain. In the case of color, for example,
this specification was derived from a well-established perceptual color space. However,
in other semantic domains, such as containers or objects more generally, it is not always
clear how to define such perceptual or conceptual spaces. Ideally, we would like to find
a principled and domain-general approach for estimating this underlying representation.

• Language evolution and efficient coding via multi-agent interactions. The evolution-
ary process we have proposed describes how the lexicon may change while remaining
near the IB theoretical limit. However, it does not provide a detailed explanation as to
how these changes may occur via the dynamics of multi-agent interactions. This calls for
studying the emergence of near-optimal semantic systems in more realistic settings of
human communication and leaning. For example, it has been shown that empirically ob-
served cross-linguistic patterns in color naming may emerge through an iterated language
learning process (Xu et al., 2013, and see also Carstensen et al., 2014), however it is un-
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known how this dynamics may be related to the IB principle and the evolutionary process
we derived from it. In addition, recent deep learning approaches to emergent communi-
cation (e.g., Foerster et al., 2016) may provide a useful infrastructure for exploring the
influence of other dynamical processes on the efficiency of the emerged lexicon.

• Efficient compression in language development. Our results suggest that pressure for
efficient compression may also be an important force during language development. That
is, our theoretical framework, which has been tested thus far on cross-linguistic data, also
predicts that children should acquire new words by following a developmental trajectory
that is pressured to remain near the IB theoretical limit. We are currently exploring this
direction and testing these predictions on developmental naming data.

• Informing machines with human-like semantics. Current state-of-the-art methods for
learning semantic representations in machines are based on training neural network lan-
guage models on extremely large amounts of text (e.g., Devlin et al., 2019; Radford et al.,
2019). These models are not grounded in a cognitively-motivated representation of the
environment, and it is not yet clear to what extent these models reflect human semantic
representations (Wang et al., 2019). This thesis has identified computational principles
that characterize human semantic systems, and could potentially guide the development
of artificial intelligence with human-like semantics.

More broadly, this thesis draws two intriguing connections between semantics and other
lines of research. First, ideas from statistical physics, such as annealing and phase transitions,
lie at the core of our evolutionary account of color naming, and may potentially apply to the
lexicon more generally. While similar ideas have previously been applied to other aspects of
language, such as word frequencies (e.g., Ferrer i Cancho and Solé, 2003) and semantic hier-
archies (Pereira et al., 1993), the application of ideas from statistical physics to cross-language
semantic variation and the evolution of the semantic categories is novel to our knowledge. We
hope that this thesis will inspire more work along these lines.

Second, while most applications of information theory to language have focused on data
transmission over a noisy channel (Gibson et al., 2019), this thesis focuses on the complement-
ing information-theoretic problem, that is, lossy data compression. Rate–Distortion theory, the
branch of information theory that characterizes optimal lossy compression, and to which the IB
principle is closely related, has recently been applied to several cognitive abilities, such as de-
cision making (Tishby and Polani, 2011; Genewein et al., 2015; Polanía et al., 2019), curiosity-
driven learning (Still and Precup, 2012), visual working memory (Sims et al., 2012), and per-
ception (Marzen and DeDeo, 2017; Sims, 2018). This thesis extends this body of literature
with applications of Rate–Distortion theory to high-level semantic representations. Therefore,
we believe that Rate-Distortion theory may complement current noisy channel approaches to
language, and furthermore, provide a general theoretical framework for studying the interaction
between semantic representations and other aspects of human cognition.
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