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ABSTRACT

Partitioning a rich set of objects into words is a fundamental aspect of human lan-
guage and a major challenge for machines. Recently, it has been argued that word
meanings evolve under pressure to optimize the Information Bottleneck (IB) prin-
ciple and that this framework may be used to inform AI systems with human-like
semantics. However, a major challenge for invoking this approach at scale is that it
assumes an underlying representation of the environment which is often unknown.
Here, we address this challenge by leveraging deep learning models for specifying
such underlying representations. We demonstrate our approach in the domain of
containers by evaluating optimal IB container-naming systems derived from rep-
resentations generated by each layer of CORnet-S, a brain-inspired deep learning
image classifier. We show a gradient in success in accounting for the container-
naming systems of Dutch and French, where the deeper layer of CORnet-S that
roughly corresponds to a high-level object recognition area in the brain outper-
forms shallower layers that correspond to lower-level visual processing. This sug-
gests that our approach may be useful for testing the relevance of various types
of non-linguistic representations to the emergence of word meanings, and could
potentially aid in informing artificial neural agents with human-like semantics.

1 INTRODUCTION

A key aspect of human language is the mapping of a rich, and often continuous, set of objects into
a relatively small number of words (Harnad, 1990; Rosch, 1999). An understanding of the compu-
tational mechanisms that languages deploy to achieve this stands to not only elucidate the cognitive
underpinnings of language, but such an understanding could potentially aid in studying how lan-
guage may emerge in artificial agents. A prominent computational cognitive approach argues that
word meanings, among other aspects of language, are shaped by pressure for efficient communica-
tion (for review: Kemp et al., 2018; Gibson et al., 2019). Zaslavsky et al. (2018) grounded this idea in
the Information Bottleneck (IB) principle (Tishby et al., 1999) and argued that languages compress
underlying representations of the environment into words by optimizing the IB complexity–accuracy
tradeoff. In support of this proposal, it was shown that IB accounts for cross-linguistic data in sev-
eral semantic domains, such as colors and containers (Zaslavsky et al., 2018; 2019). Furthermore,
this approach can potentially inform AI with human-like semantics (Zaslavsky et al., 2017).

However, a major challenge for invoking this approach, as well as related approaches that view word
meanings as partitions of some feature space (e.g. Labov, 1973; Regier et al., 2015), is the need to
specify an underlying representation of the environment. While a standard perceptual space has
been used in the case of color naming (Regier et al., 2007), such a space does not generally exist.
For containers, non-linguistic human similarity judgments have been proposed as a proxy for such
a space (Xu et al., 2016). However, this method does not scale, leaving open the question of how to
specify an underlying representation in a way that is both cognitively motivated and scalable.

In the present work, we address this challenge by proposing a domain-general paradigm for lever-
aging deep learning models to specify underlying representations of objects. As a first step in
demonstrating our approach, we consider the domain of containers and specify this domain using
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Figure 1: A. Communication model (see text for details). B. Schematic illustration of our approach.
The communication model depends on the representation space M and the communicative need
distribution p(m). Here, we fix the latter and explore the influence of the representation space on
the corresponding optimal IB systems and their ability to account for human naming data.

representations of container images generated by the brain-inspired deep learning image classifier
CORnet-S (Kubilius et al., 2018). Each layer of CORnet-S gives an underlying representation of
the domain, which in turn induces an optimal IB container-naming system. We evaluate these IB
systems on container naming data from Dutch and French. We show that the deep layer that roughly
corresponds to a high-level object recognition area in the brain (IT) outperforms shallower layers
that correspond to lower-level visual processing areas (V1, V2, and V4). This suggests that our
paradigm may be useful for testing the relevance of various types of non-linguistic representations
to the emergence of human-like semantic systems. It also sets the stage for evaluating, in future
work, other types of neural representations that capture more sophisticated properties of objects,
such as 3D shape and intuitive physics (e.g. Kulkarni et al., 2015; Wu et al., 2015; 2018; Zhang
et al., 2018; Battaglia et al., 2013), which are likely to influence semantic categories.

2 THEORETICAL FRAMEWORK

We begin by reviewing the theoretical framework of Zaslavsky et al. (2018), which the present work
extends. This framework is based on the communication model shown in Figure 1A. The speaker
obtains a mental representation M ∈ M, sampled from a communicative need distribution p(m),
and maps it to a word W ∈ W using a naming distribution, or a stochastic encoder, q(w|m). Given
W , the listener’s goal is to infer the speaker’s mental representation by forming an estimator M̂ .
These mental representations are formulated as beliefs over objects in the environment, and we refer
to M as the underlying representation space. More specifically, each m ∈ M is defined by a
probability distribution over a set U that characterizes the objects that the speaker and listener may
communicate about. Following Regier et al. (2015), we consider similarity-based distributions over
U . That is, assuming U is a set of possible objects in the environment, each target object c ∈ U
is represented by the distribution mc(u) ∝ exp(γSim(c, u)), where u ∈ U , Sim is a similarity
measure, and γ > 0 reflects the speaker’s uncertainty. Finally, we assume a Bayesian listener whose
inference M̂ given W = w is defined by m̂w(u) =

∑
m∈M q(m|w)m(u).

The IB principle predicts that efficient naming systems optimize the tradeoff between minimiz-
ing the complexity of the lexicon, measured by Iq(M ;W ), and maximizing the accuracy of com-
munication which is inversely related to Eq[D[M‖M̂ ]], the KL-divergence between the speaker’s
and listener’s mental representations. More formally, an optimal IB system qβ(w|m) minimizes
Fβ [q] = I(M ;W ) + βEq[D[M‖M̂ ]],1 for some tradeoff parameter β ≥ 0. The set of optimal IB
systems as a function of β defines the IB theoretical limit. Zaslavsky et al. (2018; 2019) showed
that color naming across languages lies near the IB theoretical limit and that this result generalizes
to other semantic domains, including container naming.

In order to apply this framework across domains the underlying representation space M must be
specified first, which is often a challenge. This work aims to address this challenge by leveraging
state-of-the-art deep learning models. To this end, we explore the influence of representation spaces
generated from such models, while keeping all the other components of the model fixed (see Fig-
ure 1B). Next, we describe our proposed approach for generating the representation space in cases
where each object in U is associated with a visual stimulus.

1This optimization problem is equivalent to the standard IB problem minq Iq(M ;W ) − βIq(W ;U). See
(Zaslavsky et al., 2018) for a detailed derivation.
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3 SPECIFYING THE REPRESENTATION SPACE

To specify the representation space M we need to define the similarity measure and the uncer-
tainty parameter γ. While representation spaces defined from non-linguistic similarity judgments
have been useful for explaining container naming systems across languages (Xu et al., 2016), this
approach has several limitations. First, it requires data that may be expensive to collect. Second,
it does not generalize to new objects. Third, it is unclear how to apply this to multiple domains
simultaneously. Therefore, we propose another approach that may overcome these limitations.

The key idea is to generate similarity scores from deep neural networks trained on a non-linguistic
task, e.g., object recognition. We assume that each object u ∈ U is associated with a visual stimulus
which can be given as input to the network and represented by a latent vector hu generated by the
network. We then construct a representational similarity matrix (RSM; Kriegeskorte et al., 2008)
using cosine similarity. That is, we take Sim(c, u) = 1 − cos(hc, hu). RSMs can be generated
for different networks and for different layers within a single network. Finally, to allow for a fair
comparison across models, we set γ for each RSM such that the maximal possible accuracy induced
by the corresponding representation spaces is constant (see Appendix A for details).

One potential concern is that these underlying representations would not necessarily be human-like.
Therefore, we consider brain-inspired deep learning models. A stand-out model class in this regard
is the Core Object Recognition network (CORnet; Kubilius et al., 2018) family of convolutional
neural networks (CNNs). This set of architectures not only draws inspiration from the brain, but its
constituents are each hierarchically organized in a manner explicitly analogous of the human ventral
visual stream. As such, they are engineered with layers directly analogous to visual areas V1, V2,
V4, and the inferior temporal cortex (IT). Specifically, we consider the CORnet-S model which
achieves high ‘Brain-Score’ (Schrimpf et al., 2018) — a benchmark for quantifying the model’s fit
to neural and behavioral data — as well as high accuracy on ImageNet (Krizhevsky et al., 2012).

4 THE CASE OF HOUSEHOLD CONTAINERS

We demonstrate our approach in the domain of container naming for two main reasons. First, con-
tainer categories are shaped not only by low-level perceptual features, such as color, but also (and
perhaps primarily) by higher-level features such as spatial structure, material, and usage (Labov,
1973). Because it is a priori unclear what are the most relevant features, models that learn to extract
relevant features could be particularly beneficial for this domain. While CORnet-S is limited in this
sense because it is CNN-based, it may still behave as a useful proxy (Wu et al., 2015). Second, this
domain has previously been studied in information-theoretic terms (Xu et al., 2016), and specifically
within the IB framework (Zaslavsky et al., 2019), using human judgments to specify the domain.
This prior work sets a baseline for evaluating the present approach.

Container naming data. Our analysis is based on data collected by White et al. (2017). Dutch
and French monolinguals were shown container images (see examples in Figure 2) and were asked
to provide a name for each container. We restrict our analysis to a subset of 77 container images
with consistent image background to simplify the pre-processing of images. For each language l,
we estimated a naming distribution pl(w|m) by mapping each container c to its representation mc

and averaging the naming responses across participants.

Models and predictions. We compare five IB container-naming models that differ only by their
underlying representation spaceM. As a baseline, we consider the model of Zaslavsky et al. (2019)
in whichM was defined from human similarity judgments, also collected by White et al. (2017).
We refer to this model as SIM. In addition, we derived a model from the representation of each

Figure 2: Examples of container images used by White et al. (2017) to elicit naming responses.
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Figure 3: Inefficiency (left) and dissimilarity (right) scores for the IB container-naming models
derived from CORnet-S (V1-IT) and from human similarity judgements (SIM). The IT model out-
performs lower-level visual models, but does not reach the performance of the SIM model.

CORnet-S layer. That is, we presented the container images to CORnet-S and computed RSMs for
the V1, V2, V4, and IT layers. For each RSM, we constructed its corresponding representation
space, and computed the optimal IB systems qβ(w|m) and theoretical limit via reverse deterministic
annealing with 2000 values of β ∈ [0, 16384].

We predict that optimal systems derived from low-level visual areas will not account well for naming
systems across languages, because semantic categories, at least in this domain, are likely to be
influenced by higher-level perceptual and conceptual features. Therefore, we expect an improvement
in performance as the model’s representation space is generated from deeper layers of CORnet-S.

Results. We evaluate the models using two measures (see Appendix B): (i) the inefficiency of
the actual languages, i.e., their deviation from optimality; and (ii) the dissimilarity between the
actual naming systems and their nearest optimal systems. Low inefficiency implies that the actual
languages achieve near-optimal complexity-accuracy tradeoffs, and low dissimilarity implies that
the optimal systems are human-like. Our predictions imply that inefficiency and dissimilarity should
decrease with the depth of the layer.

Figure 3 shows the inefficiency and dissimilarity scores for all five models. As expected, there is
a monotonic improvement from V2 to IT, and the IT representation substantially outperforms all
the lower-level visual representations. This suggests that, at least in this domain, high-level visual
features are more relevant for semantic categories than than low-level visual features. Unexpectedly,
however, the V1 model outperforms the V2 model. One speculative explanation for this is that low-
level V1 features may still have some role in shaping container categories.

Notably, the models derived from CORnet-S fail to reach the performance of the SIM model. This
is likely indicative of the gap between the perceptual features captured by CORnet-S’ IT layer, and
more complex physical and functional features which are less likely to be captured by CORnet-S
but are presumably reflected in human similarity judgments. In future work, we intend to extend our
analysis to richer forms of representation that capture 3D object shapes (e.g. Kulkarni et al., 2015;
Arsalan Soltani et al., 2017; Wu et al., 2017; 2018; Zhang et al., 2018) and intuitive physics of solids
and fluids (e.g. Battaglia et al., 2013; Wu et al., 2015; Bates et al., 2019), in order to better capture
the functional affordances of containers (or other objects) and the relationships between object form
and function that are likely crucial for understanding how language picks out object categories.

5 CONCLUSIONS

We have proposed a general method for deriving efficient semantic systems from artificial neural
representations of visual objects. Our initial results in the domain of container naming suggest
that this method can be useful for exploring which types of underlying representations may lead to
human-like semantic systems. We believe that this is noteworthy both from a cognitive perspec-
tive and from and an AI perspective. From a cognitive perspective, this work provides a potential
paradigm for further studying the relation between semantic categories and perceptual or conceptual
representations. From an AI perspective, this work suggests a principled method for generating effi-
cient, and potentially human-like, semantic systems in artificial neural agents by adding a semantic
IB component to existing representation learning systems.
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APPENDIX

A SETTING THE SPEAKER’S UNCERTAINTY PARAMETER

Recall that γ controls the speaker’s uncertainty through mc(u) ∝ exp(γSim(u, c)). We estimate
this parameter by assuming that the speaker has a constant memory capacity, regardless of the choice
of Sim. We define the speaker’s memory capacity by

I(M ;U) =
∑
c,u∈U

p(mc)mc(u) log
mc(u)

p(u)
, (1)

where p(u) =
∑
c p(mc)mc(u), and mc(u) is treated as p(u|c). It is possible to show that I(M ;U)

is also the maximal achievable communication accuracy (Zaslavsky et al., 2018). Therefore, keeping
this capacity constant across models amounts to setting the same accuracy scale for all models,
which is desired for a fair model comparison.

Note that I(M ;U) is a function of γ for a given similarity measure. Figure 4 shows these functions
for the similarity measures derived from CORnet-S’ layers. While it is unclear how to determine
the value of I(M ;U), the two extremes seem unnatural: γ = 0 corresponds to a speaker that has
no memory of what they need to communicate; γ → ∞ corresponds to a speaker with perfect
memory that never confuses two objects even if they are extremely similar. Therefore, we select an
intermediate value, I(M ;U) = 2, and adjust γ accordingly for each layer (Figure 4, dashed lines).
Finding better ways to estimate the speaker’s memory capacity is an important direction which is
left for future work.
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Figure 4: Speaker’s memory capacity (solid lines), which is also the maximal communication accu-
racy, as a function of log(γ). The horizontal black dashed line corresponds to capacity used in this
work. The vertical dashed lines correspond to values of γ used for each layer.

B MODEL EVALUATION

Our model evaluation follows the same evaluation procedure of Zaslavsky et al. (2018). Recall that
a model in our setting gives a set of IB systems qβ(w|m) as a function of β, and their corresponding
optimal complexity-accuracy tradeoffs F∗β = Fβ [qβ ]. For a given model, the tradeoff achieved by
language l is computed by plugging pl(w|m) intoFβ . Each language is then compared to the nearest
optimal system, that is, the optimal system for βl = argminβ{Fβ [pl]−F∗β}.

Inefficiency is defined by εl = 1
βl
(Fβl

[pl] − F∗βl
). This measures the deviation from optimality of

the language’s complexity-accuracy tradeoff.

The dissimilarity measure does not consider the complexity-accuracy tradeoffs, but rather compares
directly the actual system pl(w|m) with the corresponding optimal system qβl

(w|m). This is defined
by gNID (Zaslavsky et al., 2018), an information-theoretic measure for the divergence between two
naming distributions.
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