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Abstract

The Information Bottleneck (IB) framework provides a principled and broadly applica-
ble approach for studying efficient compressed representations in artificial and biological
systems. However, a comprehensive mathematical understanding of the optimal IB rep-
resentations and the structural phase transitions they undergo via deterministic annealing
exists only in a few limited cases. Here, we address the case of symbolic, or discrete,
representations, which is particularly relevant to the emergence of language and abstract
representations more generally. We characterize the structural changes in the IB represen-
tations as they evolve via a deterministic annealing process; derive an algorithm for finding
critical points; and explore numerically the types of bifurcations and related phenomena
that occur in IB. This work extends the theoretical grounds for understanding optimal rep-
resentations within the IB framework.

1 Introduction

The Information Bottleneck (IB) framework [1] provides a principled approach for studying
efficient compressed representations in artificial and biological systems. In this view, efficient
representations should compress their inputs by maintaining the minimal amount of informa-
tion on the input that is required for making accurate predictions about a target variable. In
the past several years, there has been a surge of evidence for the wide applicability of IB in
multiple fields, including deep learning [2, 3, 4, 5], and machine learning in general [6, 7],
neuroscience [8, 9, 10], language [11, 12], and music [13]. However, a comprehensive math-
ematical understanding of the structure and evolution of the IB representations exists only in
very few cases, usually when Gaussian assumptions are made [7, 14].

The goal of this work is to extend this understanding to the case of discrete random vari-
ables, which induce symbolic IB representations. This setting is particularly relevant to the
emergence of language [12] and, more broadly, abstract representations. Structural phase



transitions1 have previously been studied in related settings, such as clustering and classifi-
cation [15, 16], and to some extent also in the case of IB [17]. The present work goes beyond
these previous studies by (1) introducing order parameters that capture the evolution of the IB
representations; (2) deriving a novel algorithm for finding critical points in which the represen-
tations undergo a phase transition; and (3) exploring numerically the types of phase transitions
and related phenomena that occur in IB.

The remainder of this paper is structured as follows. In Section 2 we formulate the notion of
efficient compressed representations and ground it in the IB principle. In Section 3 we charac-
terize the evolutionary process of the IB representations and the structural phase transitions they
undergo. In Section 4 we present numerical simulations that demonstrate these phenomena.

2 Efficient compressed representations

2.1 Setting

Let X 2 X be a source random variable, Y 2 Y a target variable, and p(x, y) their joint
distribution. We assume p(x, y) is known, although in practical applications this distribution is
often estimated from data (see [6] for confidence bounds). For simplicity, assume that X and Y

are finite sets with sizes m and n respectively. For any two random variables, denote by4(X )

the (m � 1)-dimensional simplex of distributions over the elements of X , and by 4(Y)X the
set of conditional distributions of Y given X . That is, 4(Y)X = 4(Y) ⇥ · · · ⇥ 4(Y) is the
m-ary product of4(Y). We are interested in characterizing efficient representations of X .

Definition 1. A representation X̂ 2 X̂ is a stochastic function of X , defined by a conditional

distribution p(x̂|x) 2 4(X̂ )X . If X̂ is a discrete set of arbitrary symbols, then we say that X̂

is a symbolic representation of X .

In this work we consider symbolic representations, where |X̂ | is finite. From an information-
theoretic perspective, p(x̂|x) is a stochastic encoder and X̂ is the code alphabet. In addition,
Definition 1 implies that X̂ obeys the Markov chain Y �X � X̂ .

This general setup is broadly applicable. For example, in supervised learning settings [e.g.,
11, 6, 2], X would be an input of a classifier, Y would be a target label, and X̂ would be
an intermediate representation employed by the classifier. In unsupervised learning, this set-
ting corresponds to distributional clustering [e.g., 18, 19], namely assignment of the points
p(y|x) 2 4(Y) to clusters x̂ 2 X̂ . In statistics, Y may be an unknown parameter of a distribu-
tion py(x) = p(x|y), in which case X would be a sample from this distribution, and X̂ would
be a statistic of the sample. In the case of semantic systems [12], Y would be a set of rele-
vant features in the environment, X would be a referent defined by a distribution over features,

1We use the term “phase transitions” a bit loosely. Strictly speaking, the phenomena we study are bifurcations,
which are not necessary phase transitions in the physical sense.



i.e.p(y|x), and X̂ would be a word that is used to communicate the referent.

2.2 The Information Bottleneck method

In all of the settings mentioned above, we may ask: what would be an optimal representa-
tion? Intuitively, a good representation should require minimal resources, while achieving
maximal predictive power. This intuition is formalized by the Information Bottleneck (IB)
principle [1]. According to IB, the complexity of the representation is measured by Ip(X; X̂),
which is roughly the number of bits that are required for representing X using X̂ . The infor-
mativeness, or accuracy, of the representation is measured by Ip(X̂;Y ), which is the amount of
relevant information about Y preserved by the representation. The optimal IB representations
minimize Ip(X; X̂), such that Ip(X̂;Y ) remains sufficiently high. Formally, this constrained
optimization problem can be solved by minimizing the Lagrangian

F�[p(x̂|x)] = Ip(X; X̂)� �Ip(X̂;Y ) , (1)

where � � 0 is the Lagrange multiplier for the constraint on Ip(X̂;Y ). � can also be consid-
ered as a tradeoff parameter, or inverse-temperature in analogy to statistical mechanics [15].
Given �, denote the optimal value of the IB objective by F

⇤
� , and the optimal complexity and

accuracy by I�(X; X̂) and I�(X̂;Y ) respectively. The IB theoretical limit is defined by the
Pareto optimal tradeoffs (I�(X; X̂), I�(X̂;Y )) as a function of �. This parametric curve [20]
is called the information curve (see Figure 1A for example).

Tishby et al. [1] showed that a necessary condition for p�(x̂|x) to be a stationary point of
F� is that it satisfies the following self-consistent equations:

8
>>>>>><

>>>>>>:

p�(x̂|x) =
p�(x̂)

Z�(x)
exp (��D[p(y|x)kp�(y|x̂)])

p�(x̂) =
X

x2X

p(x)p�(x̂|x)

p�(y|x̂) =
X

x2X

p(y|x)p�(x|x̂)

, (2)

where Z�(x) is the normalization factor, also known as the partition function, and p�(x|x̂) is
obtained by applying Bayes’ rule with respect to p�(x̂|x) and p(x). We refer to representations
that satisfy (2) as IB representations. These representations can be found via the IB method
(Algorithm 1), which is a variant of the Blahut–Arimoto algorithm [21, 22].

2.3 Effective cardinality

The cardinality of an IB representation K(p�) is defined by the cardinality of its support,
Supp(p�) = {x̂ 2 X̂ : p�(x̂) > 0}. That is, K(p�) = |Supp(p�)|. The following proposition



Algorithm 1: IB [Tishby et al., 1999]
Input: p(x, y), initial mapping p0(x̂|x), and tradeoff � � 0
Output: Fixed point of F�

p(x̂|x) p0(x̂|x)
while p(x̂|x) not converged do

p(x̂) 
P

x p(x)p(x̂|x)
p(y|x̂) 

P
x p(y|x)p(x|x̂(x̂))

p(x̂|x) p(x̂)
Z(x) exp (��D[p(y|x)kp(y|x̂)])

return p(x̂|x)

shows that there may be a simple transformation that reduces the cardinality of the representa-
tion without compromising its optimality given �.

Proposition 1. If p�(x̂|x) is an IB representation with cardinality K, and there are x̂1, x̂2 2

Supp(p�) such that p�(y|x̂1) = p�(y|x̂2), then there exists an IB representation p̃�(x̂|x) with

cardinality K � 1 such that F�[p̃�] = F�[p�].

Proof. We construct a representation p̃�(x̂|x) by merging x̂1 and x̂2. For all x and x̂ 6= x̂1, x̂2,
let p̃�(x̂|x) = p�(x̂|x). For x̂2 let p̃�(x̂2|x) = 0, and for x̂1 let p̃�(x̂1|x) = p�(x̂1|x) +

p�(x̂2|x). Given this construction, it is easy to verify that p̃� satisfies the IB equations (2), and
that F�[p�] = F�[p̃�]. In addition, since p̃�(x̂2) = 0, it holds that Supp(p̃�) = Supp(p�)\{x̂2},
which implies that K(p̃�) = K � 1, and this concludes the proof.

p� and p̃� are equivalent representations in the sense that they keep the same information
about X and Y . More generally, we define the equivalence class of p� by the set of all repre-
sentations p̃� that satisfy the IB equations (2) for the same value of �, and for which there exist
mappings ' : X̂ ! X̂ and  : X̂ ! X̂ such that p̃�(y|'(x̂)) ⌘ p�(y| (x̂)). In other words,
the equivalence class of p� is determined by the set of distributions over Y that it induces, i.e.,

{p(y) 2 4(Y) : 9x̂, p(y) ⌘ p�(y|x̂)} . (3)

Denote this equivalence class by [p�]. Here, we focus on representations with minimal cardi-
nality within their equivalence class.

Definition 2. The effective cardinality of an IB representation p� is

k(p�) = min
p̃�2[p� ]

K(p̃�).

We say that p�(x̂|x) is a canonical IB representation if k(p�) = K(p�).

In the remainder of this paper we assume that the IB representations are canonical, unless
stated otherwise. In particular, this implies that p�(y|x̂1) 6= p�(y|x̂2) for all x̂1 6= x̂2.



Algorithm 2: Reverse Deterministic Annealing for IB (RDA-IB)
Input: p(x, y), scheduling �t > �t�1 > · · · > �1 � 0
Output: Fixed points for all �i
p0(x̂|x) Im (initialize)
for i = t, t� 1, . . . , 1 do

pi(x̂|x) IB (p(x, y), pi�1(x̂|x), �i) (initialize IB with the previous f.p.)
return {pi(x̂|x)}t

i=1

Notice that for � = 0, the global optimum is trivial, and any X̂ that is independent of X
will attain the minimum F

⇤
0 = 0. In fact, this holds for all � 2 [0, 1], because I(X; X̂) �

I(X̂;Y ) due to the Data Processing Inequality [23]. A canonical representation in this case is
a constant x̂, and so the effective cardinality is k = 1. As � ! 1, the optimal mapping from
X to X̂ becomes deterministic, and the effective cardinality would be maximal. In particular,
if |X̂ | � |X |, then the global optimum is attained by any one-to-one mapping from X to
X̂ .2 In between these two extremes, as � gradually increases, the IB representations undergo
a sequence of structural changes, also called phase transitions or bifurcations, in which the
effective cardinality changes.

Intuitively, we can think of I�(X; X̂) as the logarithm of the effective cardinality because

k(p�) ⇡ 2I�(X;X̂)
. (4)

This follows from the same typicality argument that Shannon applied in Rate-Distortion the-
ory [24], which implies that I�(X; X̂) is roughly the minimal number of bits that are needed
for encoding X using X̂ .

2.4 Reverse deterministic annealing

The IB optimization problem is non-convex, and thus Algorithm 1 is prone to converge to
local minima of F� . A common approach for mitigating this problem is based on the notion
of deterministic annealing [15, 16, and see also 25]. A deterministic annealing optimization
procedure starts with an initial solution for a low value of �, e.g., � = 0, for which finding
a globally optimal solution is trivial. Then, the solution is refined by invoking the iterative
algorithm while gradually increasing � (cooling down the system) according to some annealing
schedule. This process attempts to track the optimal solution as � increases from 0 to1.

Here, we are not only interested in the solution for � !1, but rather in the whole trajectory
which captures the evolution of the IB representations. In fact, if |X̂ | = |X |, then the solution
for � ! 1 is straight forward, as mentioned earlier. This suggests a reverse deterministic

annealing procedure, which starts with a bijective representation and a large value of �, and

2We assume here that a non-trivial minimal sufficient statistics (MSS) of X for Y does not exists. If it does,
then at the limit X̂ would be isomorphic to the MSS.



then gradually decreases �. This procedure is summarized in Algorithm 2. The numerical
simulations in Section 4 are based on reverse deterministic annealing because we found it to be
more numerically stable than deterministic annealing, while yielding overall similar results.

3 Characterizing the evolution of the IB representations

In this section, we present several tools for characterizing the evolution of the IB representa-
tions and the structural phase transitions they undergo. More specifically, we propose several
measures that reflect these structural changes as � varies, and introduce an algorithm for find-
ing critical values of �. In addition, we analyze the structural phase transitions in the special
case where Y is a deterministic function of X .

3.1 Bifurcations in IB

Bifurcation diagrams are a powerful method for observing qualitative changes in the fixed
points of a dynamical system that occur when varying a bifurcation parameter [26]. In our case,
the dynamics is defined by the iterative process of Algorithm 1, the fixed points of this process
are the IB representations, and the bifurcation parameter is �. Typically, bifurcation diagrams
show the fixed points of the system as a function of the bifurcation parameter. However, the
IB fixed points are usually high-dimensional distributions, and so it is not always clear how to
observe their bifurcations. Here we discuss how to address this issue in two cases: (1) when Y

is binary, and (2) in the more general case of discrete variables.

3.1.1 Centroid bifurcations

We have shown in Section 2.3 that the set {p(y) 2 4(Y) : 9x̂, p(y) ⌘ p�(y|x̂)} defines the
equivalence class [p�]. This implies that it is sufficient to consider p�(y|x̂) as a function of �,
instead of p�(x̂|x). In the case in which Y is binary, this reduces to a single parameter for each
x̂, namely p�(y = 1|x̂). We refer to this type of bifurcation diagram as the centroid bifurcation

diagram, because p�(y|x̂) can be viewed as the cluster centroids of the points p(y|x) 2 4(Y)

under the clustering p�(x̂|x).
Figure 1D shows an example of this type of bifurcation diagram. For � = 1 there is only

one possible value, p�(y = 1|x̂) = 0.5, which corresponds to the prior distribution p(y). This
fixed point remains stable (and optimal) also for � greater than 1, but smaller from some critical
value �0. The first bifurcation occurs at �0, when the prior centroid splits into two centroids
and the effective cardinality increases. It is easy to verify that p�(y|x̂) = p(y) remains a fixed
point of the IB equations even for � > �0, by simply substituting this solution in (2). However,
this fixed point loses its stability at �0 and is no longer globally optimal after that point. This
type of phase transition is analogous to a pitchfork bifurcation [26]. A second critical point can
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Figure 1. Characterization of the evolution of IB representations in an illustrative example. Here, Y

is binary, X and X̂ are trinary, p(x) is uniform, and p(y|x) is shown by the leafs of the bifurcation
tree in panel D. The red points in all panels correspond to the two critical points that were found by
Algorithm 3. A. Normalized information curve. B-C. Bifurcations of the (normalized) order parameters
IX(x̂) and IY (x̂) respectively. The expected values over x̂, i.e. IX and IY , are shown by the black
curves. D. Centroid bifurcation diagram. E. Evolution of �

�1
2 (x̂) for each x̂, where �2(x̂) is the second

largest eigenvalue of C
�,x̂
Y . The black curve shows �. F. Closer view of �

�1
2 (x2) (red curve in panel E)

and � (black curve in panel E) near the two critical points. Black arrows show iterations of Algorithm 3
in which �2 is computed given � (vertical arrows) and then � is updated from �2 (horizontal arrows)
until convergence. See main text for more detail.

also be seen in Figure 1D, in which another split occurs. The effective cardinality after this
split is K = 3, and since in this case |X̂ | = 3, another bifurcation after this point is impossible.

3.1.2 Informational bifurcations

Centroid bifurcation diagrams are useful when Y is binary, but are difficult to visualize when
|Y| > 2. Therefore, we propose an alternative approach that can be applied in the more general
case of discrete variables. To this end, we define two informational measures that reflect the
structural changes in IB as a function of �.

Definition 3. Given an IB representation p� for some � � 0, the point-wise information of



x̂ 2 Supp(p�) about X or Y , denoted by I
�
X(x̂) or I

�
Y (x̂) respectively, are defined as

I
�
X(x̂) = D [p�(x|x̂)kp(x)] (5)

I
�
Y (x̂) = D [p�(y|x̂)kp(y)] , (6)

where D[·k·] is the Kullback-Leibler divergence. These measures are undefined for x̂ /2 Supp(p�).

Notice that before the first phase transition, i.e. for � < �0, if these measures are defined
then necessarily I

�
X(x̂) = 0 and I

�
Y (x̂) = 0. At a critical point �x̂ after which x̂ 2 Supp(p�),

these two informational measures become non-negative. We refer to these measures as order

parameters, as they are indicative of structural changes in the representation. Note that

I�(X̂;Y ) = E
x̂⇠p�(x̂)

[I�Y (x̂)] (7)

and similarly, I�(X; X̂) = E[I�X(x̂)]. In this sense, these two informational order parameters
compose the information curve.

Figure 1B and Figure 1C show the changes of these order parameters as a function of
log(�), for the same illustrative example considered in Section 3.1.1. We refer to these types
of diagrams as informational bifurcation diagrams. The structural changes of the IB represen-
tations, directly observed in Figure 1D, are also reflected in the informational bifurcation dia-
grams, in which cardinality changes are accompanied by an emergence of an order parameter.
This order parameter corresponds to the x̂ that has been added to Supp(p�). These structural
changes are also reflected in the expected values of the order parameters (black curves in Fig-
ure 1B-C), i.e., I�(X; X̂) and I�(X̂;Y ), which have discontinuous derivatives with respect to �
at the critical points. The following proposition shows that these discontinuities occur exactly
at the same values of �.

Proposition 2.
@
@� I�(X; X̂) = �

@
@� I�(X̂;Y ).

Proof. Substituting the explicit form of p�(x̂|x), as given by (2), in I�(X; X̂) gives

I�(X; X̂) =
X

x,x̂

p(x)p�(x̂|x) (��D[p(y|x)kp�(y|x̂)]� logZ�(x))

= �E
x
[logZ�(x)]� �

⇣
I(X;Y )� I�(X̂;Y )

⌘
,

where the second step follows from Lemma 1 in the Appendix. Therefore, the derivative with
respect to � is

@

@�
I�(X; X̂) = �

@

@�
E
x
[logZ�(x)]�

⇣
I(X;Y )� I�(X̂;Y )

⌘
+ �

@

@�
I�(X̂;Y ).

Lemma 2 in the Appendix shows that @
@� Ex [logZ�(x)] = I�(X̂;Y ) � I(X;Y ). Substituting

this in the equation above concludes the proof.



Another implication of Proposition 2 is that the discontinuities in @
@� I�(X; X̂) and @

@� I�(X̂;Y )

coincide with Ehrenfest’s definition of second-order phase transitions [27]. According to Ehren-
fest, a second-order phase transition occurs if the second order derivative of the free energy F

⇤
�

is discontinuous, but not the first order derivative. The following corollary shows that the n-th
order derivative of F

⇤
� is given by the (n� 1)-th order derivative of �I�(X̂;Y ).

Corollary 1.
@
@�F

⇤
� = �I�(X̂;Y ).

Proof. This follows directly from Proposition 2 because taking the derivative of F
⇤
� with re-

spect to � gives

@

@�
F

⇤
� =

@

@�
I�(X; X̂)� �

@

@�
I�(X̂;Y )� I�(X̂;Y ) .

Therefore, if the first-order derivative of I�(X̂;Y ) is discontinuous, then so is the second-
order derivative of F

⇤
� . If I�(X̂;Y ) is continuous in �, then this corresponds to Ehrenfest’s

second-order phase transition, and otherwise to a first-order phase-transition. Furthermore,
proposition 2 and corollary 1 suggest that in practice it is sufficient to consider only I

�
Y (x̂) as

the order parameter. This conclusion is further supported by lemmas 3 and 4 in the Appendix,
which show more precisely how the two order parameters and their derivatives are related.

3.2 Finding critical points

Thus far we have showed that the evolution of IB representations is reflected in a set of order
parameters, O = {I

�
Y (x̂) : x̂ 2 Supp(p�), � � 0}. These parameters capture the evolutionary

trajectory and the critical values of � in which second order phase transitions occur. A natural
question is then: Given a joint distribution p(x, y), what are the values of these critical points?
To address this question, we propose an algorithm for finding such points. We refer to this
algorithm as Criticality Search (Algorithm 3). First, we derive a necessary condition for a
second-order phase transition, which will form the basis of the algorithm.

Following a similar argument as in [15], we consider small perturbations of the IB rep-
resentation near a critical point. At a critical point in which a cluster splits continuously,
there exist non-trivial perturbations h�̃(x, x̂) such that for all �̃ � �, in a small vicinity of
�, it holds that p̃�(x̂|x) = p�(x̂|x) + h�̃(x, x̂) satisfies the IB equations (2) for �̃. Assuming
that the right derivatives of h�̃(x, x̂) and p�̃(x̂|x) with respect to �̃ exist and are non-zero at
�̃ = �, then rh�̃

log p�̃(x̂|x)
��
�̃=�

is well-defined, and so are these derivatives for log p�̃(x|x̂)

and log p�̃(y|x̂). As in [15], we neglect the influence of inter-cluster interactions, which yields



in our case the approximation

ux̂,�[x] ,
X

x0

@log p�(x|x̂)

@h�(x0, x̂)
⇡ �

X

y

p(y|x)
X

x0

@log p�(y|x̂)

@h�(x0, x̂)
(8)

vx̂,�[y] ,
X

x0

@log p�(y|x̂)

@h�(x0, x̂)
=
X

x

p(y|x)p�(x|x̂)

p�(y|x̂)

X

x0

@log p�(x|x̂)

@h�(x0, x̂)
. (9)

The coupled equations (8)-(9) can be re-organized and simplified as follows:

ux̂,�[x] ⇡ �

X

y

p(y|x)
X

x0

p(y|x0)p�(x0
|x̂)

p�(y|x̂)
ux̂,�[x

0] (10)

vx̂,�[y] ⇡ �

X

x

p(y|x)p�(x|x̂)

p�(y|x̂)

X

y0

p(y0|x)vx̂,�[y
0] . (11)

This gives two non-linear eigenvector conditions for a cluster split,

(��1
I � C

�,x̂
X )ux̂,� = 0 (12)

(��1
I � C

�,x̂
Y )vx̂,� = 0 , (13)

where C
�,x̂
X is a |X |⇥ |X | matrix defined by

C
�,x̂
X [x, x0] =

X

y

p(y|x)p(y|x0)p�(x0
|x̂)

p�(y|x̂)
,

and C
�,x̂
Y is a |Y|⇥ |Y| matrix defined by

C
�,x̂
Y [y, y0] =

X

x

p(y|x)p�(x|x̂)p(y0|x)

p�(y|x̂)
.

For brevity, we simplify the notation by omitting the explicit reference to � and x̂ when their
actual values are implied or can be arbitrary. It follows that under our assumptions, a necessary
(approximated) condition for a second-order phase transition that involves x̂ is that ��1 is
an eigenvalue of C�,x̂

X and C
�,x̂
Y . We note that the condition on CX is closely related to the

bifurcation analysis of [17]. Next, we show that both CX and CY are stochastic matrices with
the same non-zero eigenvalues.

Proposition 3. CY and CX have the same non-zero eigenvalues, and their largest eigenvalue

is always 1 with 1 as an eigenvector.

Proof. The first part follows from the fact that for any two m ⇥ n real matrices, A and B, it



holds that AB> and A
>
B have the same eigenvalues. For any given � � 0 and x̂ 2 X̂ , let

A[x, y] = p(y|x)

B[x, y] =
p(y|x)p�(x|x̂)

p�(y|x̂)
.

It is easy to verify that CX = AB
> and CY = B

>
A. Next, we will show that CX and CY are

stochastic matrices. All the values in these matrices are clearly positive, and so it remains to
show that the rows sum up to 1. Notice that B[x, y] = p�(x|x̂, y), and thus

X

x0

CX [x, x
0] =

X

x0

X

y

p(y|x)p�(x
0
|x̂, y) = 1

X

y0

CY [y, y
0] =

X

y0

X

x

p(y0|x)p�(x|x̂, y) = 1 .

It follows from the Perron–Frobenius Theorem that for both CX and CY , the largest eigenvalue
is always 1 with eigenvector 1.

An immediate conclusion from Proposition 3 is that it is sufficient to find the eigenvalues
only for the lower dimensional matrix, which is typically CY . Furthermore, this criticality
condition becomes particularly simple when Y is binary.

Corollary 2. Assume |Y| = 2, then a necessary condition for a phase transition at � is that

there is some x̂ 2 X̂ for which � = det(C�,x̂
Y )�1

.

Proof. For 2 ⇥ 2 stochastic matrices, the first eigenvalue is �1 = 1 and the second eigenvalue
�2 is given by the determinant. Therefore, for a binary Y it holds that �2(x̂) = det(C�,x̂

Y ),
which implies that a necessary condition for (13) is � = det(C�,x̂

Y )�1.

Another conclusion from Proposition 3 is that the criticality condition cannot hold for
� < 1, because the largest eigenvalue is always 1. This is consistent with the fact that the
first critical point �c0 is necessarily greater or equal than 1 (see Section 2.3). For 1  �  �c0 ,
any trivial representation for which p(x|x̂) = p(x) and p(y|x̂) = p(y) is optimal, yielding
C

0
Y [y, y

0] =
P

x p(x|y)p(y0|x) which is independent of � and x̂. Therefore, finding �c0 amounts
to finding the eigendecomposition of C0

Y . For � > �c0 , C�,x̂
Y may vary with � resulting in the

self-consistent condition ��1
2 Eig(C�,x̂

Y ) for criticality, where Eig(C�,x̂
Y ) is the set of eigenval-

ues of C�,x̂
Y . Therefore, finding critical points after �c0 is no longer a simple eigendecomposition

problem. To address this problem, we propose the Criticality Search algorithm.

3.2.1 Criticality Search

Criticality Search (Algorithm 3) is an iterative algorithm that finds candidate values of � that
satisfy the self-consistent criticality condition. It starts with an initial guess �c(x̂) = �0, com-
putes the eigenvalues of CY (assuming Y is the lower-dimensional variable), and then checks



the criticality condition. If the condition is not met, the algorithm picks another candidate by
making an educated guess:

�
new
c (x̂) = min{�

�1(x̂) : � 2 Eig(C�c,x̂
Y ),� 6= 1} . (14)

When Y is binary, this guess simply becomes �new
c (x̂) = det(C�,x̂

Y )�1. This process is repeated
for each x̂ until a point �c(x̂) that satisfies the condition is found, or when � is large enough
such that a maximally-informative point is reached, i.e. when I�(X̂;Y ) = I(X;Y ).

The algorithm is demonstrated by the simulations of Figure 1. The red points in all pan-
els correspond to the two critical points found by the algorithm. It can be seen that these
points correspond to the structural phase transitions observed in the centroid bifurcation dia-
gram (Figure 1D) and in the informational bifurcation diagrams (Figure 1B-C). The iterations
of the algorithms are demonstrated in Figure 1F. This figure shows a run that was initialized
with �0 slightly larger than the first critical point. It converged to the second critical point
for x̂2 by iterating between the red curve, which corresponds to ��1

2 (x̂), and the black curve,
which corresponds to �. The fixed points of this iterated map are precisely the points in which
the criticality condition is met. While our criticality condition only approximates a necessary
condition for a phase transition, in all our numerical simulations the algorithm converged to
actual critical points. This suggests that the condition we derived is a good approximation. In
addition, we conjecture that while it is possible that the condition is met at non-critical points,
these points might be unstable fixed points of the algorithm.

3.3 The deterministic case

To complete our characterization of the IB phase transitions, we discuss the special case in
which Y is a deterministic function of X . This case exhibits qualitatively different behavior
compared to cases in which p(y|x) > 0 for all x and y, and has recently been explored in the
context of deep learning [28].

First, we argue that we can consider without loss of generality the case in which p(y|x)

is deterministic and defines a one-to-one mapping from X to Y . That is, for every x there
is a unique value y(x) such that p(y0|x) = �y0,y(x). Otherwise, if there exist x1, x2 such that
y(x1) = y(x2), we can replace both of them by a single value x1,2 such that y(x1,2) = y(x1)

and p(x1,2) = p(x1) + p(x2). This does not change the structure of the problem, that is, the IB
clustering problem discussed in Section 3.1.1 remains the same. This also implies that we may
assume without loss of generality that |X | = |Y|.

In this case, I(X; X̂) = I(X̂;Y ) and the IB objective function becomes

F�[p] = (1� �)Ip(X̂;Y ) .

There are three different regimes for � in this case: (i) when � < 1, the solution is the same



Algorithm 3: Criticality Search
Input: p(x, y), initial p0(x̂|x), and �0
Output: Candidate critical points
for x̂ 2 X̂ do

p(x̂|x) p0(x̂|x) (initialize)
�c(x̂) �0

�c  0
while �c(x̂) 6= �

�1
c do

p(x̂|x) IB (p(x, y), p(x̂|x), �c(x̂)) (update encoder)
CY  B

>
A (update CY )

U,D = EVD(CY ) (eigendecomposition of CY )
L {�i : �i = Dii, 8i = 1, . . . , n} \ {1}
if 9� 2 L such that �c(x̂) = �

�1
then

�c  � (found a candidate for x̂)
else if Ip(X̂;Y ) = I(X;Y ) then

�c(x̂) 1 (no candidates were found for x̂)
continue

else

�c(x̂) min
�2L

�
�1 (educated guess for the next iteration)

return �c(x̂), 8t 2 X̂

as in the general case, i.e. it is the trivial solution for which I(X̂;Y ) = 0; (ii) when � = 1,
F�[p] = 0 for all p(x̂|x), which means that any representation p(x̂|x) would be equally good;
(iii) when � > 1, minimizing F�[p] becomes equivalent to maximizing Ip(X̂;Y ). The solution
in this regime is equivalent to the solution when � ! 1, and so the optimal representation
would be a deterministic mapping from X to X̂ . Therefore, in this regime, the parameter that
shapes the optimal representations is the hard constraint on |X̂ | rather than �.

Because ��1 is the slope of the information curve [20], the curve in the deterministic case
is linear with slope 1 (or piecewise linear, as noted also in [28], if we relax the assumption
that y(x) is a bijective function, in which case the curve becomes flat once H(Y ) is reached).
We identify, contra to [28], a sequence of structural phase transitions along this line, which are
characterized by the solutions to the following optimization problems for K = 1, . . . , |X |:

max
p

Ip(X̂;Y )

such that Supp(p)  K .

These problems are NP-Hard, although in some cases (e.g., K = |X̂ |) they are tractable.



4 Numerical examples

In this section we explore numerically (a) the types of structural phase transitions that may
occur in IB; (b) related phenomena such as critical slowing down; and (c) the influence of
p(x, y) on the evolutionary trajectory of the representations. We do so by considering several
numerical examples that are designed to be as simple as possible and at the same time convey
important insight about the evolutionary trajectory of the IB representations.

4.1 Sensitivity to the source distribution

We begin by exploring the influence of the source distribution p(x) on the evolution of the
representations. To this end, we fix p(y|x) and vary only p(x). We take Y 2 {0, 1} and
trinary X and X̂ . We define p(y|x) by p(y = 1|x1) = 0.25, p(y = 1|x2) = 0.48, and
p(y = 1|x3) = 0.75. The choice of p(y|x2) is deliberately meant to break the symmetry in
this example. The symmetric case will be explored in the next section. We consider four joint
distributions defined by p(y|x) and the following source distributions:

p1(x) =
⇣
0.45 0.1 0.45

⌘

p2(x) =
⇣

1
3

1
3

1
3

⌘

p3(x) =
⇣
0.18 0.64 0.18

⌘

p4(x) =
⇣
0.1 0.8 0.1

⌘
.

For each joint distribution pi(x, y) = pi(x)p(y|x), we evaluated the evolutionary trajectory
of the IB representations via Algorithm 2, the corresponding centroid bifurcation diagram, and
the evolution of the second eigenvalue of C�,x̂

Y for all x̂. The results are shown in Figure 2.
It can be seen that in all four cases there are two critical points. At these points, the effective
cardinality increases, which is reflected in the emergence of a new distinct value in the centroid
bifurcation diagrams (Figure 2A). Note that the effective cardinality corresponds to Supp(p�)

only when the representation is canonical. For p3 and p4, all the representations found by Algo-
rithm 2 are canonical, and therefore at the critical points Supp(p�) changes. This can be seen
in Figure 2B, where p�(x̂) becomes positive for some x̂.

Figure 2C shows that, as expected based on the theoretical analysis of Section 3, �2(x̂)
coincides with ��1 at critical points in which centroids splits continuously (e.g., the first phase
transition for p1). Interestingly, Figure 2A reveals that not all phase transitions correspond to
continuous centroid splits (e.g., the second phase transition for p1). However, even in these
discontinuous cases �2(x̂) seems to be indicative of the phase transition because it tends to
reache ��1 at those critical points.

Finally, we observe a critical slowing down phenomenon near the phase transitions, in
which the convergence time of the IB iterations diverges (Figure 2D). This phenomena has
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Figure 2. Numerical simulations with asymmetric distributions. The i-th column corresponds to the set
of results for pi(x, y). Colored curves (blue, orange, green) in panels A-C correspond to different values
of x̂. A. Centroid bifurcation diagrams. B. p�(x̂) as a function of log(�). C. The evolution of the second
eigenvalue �2(x̂) as a function of log(�). D. Log convergence time of Algorithm 1, i.e., the number of
IB iterations, as a function of log(�).

been known to happen near phase transitions in other settings [29, 30], and further analysis of
this phenomena in the case of IB is left to future research.

This numerical exploration shows that the source distribution may have substantial influ-
ence on the location of the critical points, as well as their type. For example, bifurcations that
appear as continuous splits, similar to pitchfork bifurcations, may change to what appears as
a discontinuous emergence of a new centroid. In addition, our simulations suggest that the
IB phase transitions may also be characterized by critical slowing down, in addition to the
characterization of Section 3.

4.2 Symmetric distributions

Next, we repeat the same analysis with symmetric distributions. We constructed these distribu-
tions by taking the four asymmetric distributions from before and changing p(y = 1|x2) = 0.5.
Figure 3 shows the results in this case. Not surprisingly, the bifurcation diagrams are symmet-
ric for these distributions (Figure 3A). In addition, these examples demonstrate that p(x) may
influence not only the type of bifurcations but also their number. For p1 and p2 there are two
critical points, as before, however for p3 and p4 there is only one critical point. Furthermore,
for p3 and p4 we observe a trinary split in which the effective cardinality jumps from k = 1 to
k = 3. This appears to happen either via a continuous split (as in p3) or via a discontinuous



Figure 3. Numerical simulations with symmetric distributions. The i-th column corresponds to the set
of results for pi(x, y). Colored curves (blue, orange, green) in panels A-C correspond to different values
of x̂. In some cases the blue and green curves overlap. A. Centroid bifurcation diagrams. B. p�(x̂) as
a function of log(�). C. The evolution of the second eigenvalue �2(x̂) as a function of log(�). D. Log
convergence time of Algorithm 1, i.e., the number of IB iterations, as a function of log(�).

emergence of a new value (as in p4). In the continuous case, which corresponds to the assump-
tions of our criticality condition, �2(x̂) = �

�1
c for all three clusters at the same critical point

(intersection of the colored curves with the black curve in Figure 3C, p3). This behavior is less
clear is the discontinuous case (Figure 3C, p4). In both cases, however, we observe critical
slowing down near the phase transition (Figure 3D).

4.3 Water filling in Bayesian networks

In this final example, we extend our analysis to the multivariate case and illustrates a potential
application of our approach to design principles for neural network architectures. Specifically,
we use the methods of Section 3, but instead of the standard IB method we apply its multivariate
extension [31, Multivariate IB (MVIB)]. MVIB takes the multi-information, which is defined
for a set of random variables Z = (Z1, . . . , Zn) ⇠ p(z1, . . . , zn) by

I(Z) = D

"
p(z1, . . . , zn)

����
nY

i=1

pi(zi)

#
, (15)

as a natural extension of mutual information in the multivariate case. The MVIB objective
function is then I(X, X̂) � �I(X̂,Y), where X, Y and X̂ are multivariate variables and the
statistical dependencies between them are defined by a Bayesian network.
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Figure 4. Numerical simulations in the multivariate case. A. The Bayesian network used in our simu-
lations. B. The multivariate information curve. C. Information that the hidden representation maintains
about the input. Note that for every � it holds that I(X, X̂) = I(X; H1) + I(X; H2). D. Information
about the ground truth Y extracted by the hidden representation.
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Figure 5. Evolution of the hidden representation. A. Bifurcation diagrams for the H1 encoder (left) and
H2 encoder (right). B. Centroid bifurcation diagram.

To demonstrate our approach numerically, we consider the Bayesian network of Figure 4A,
where X = (X1, X2) is the input, X̂ = H = (H1, H2) is the hidden layer of the network, and
Ŷ is the network’s prediction defined such that p(Ŷ = y|x̂) = p(Y = y|x̂). For simplicity,
we assume that all variables — X1, X2, H1, H2, Y , and Ŷ — are binary. We take p(x) to
be uniform, and define p(y|x) by p(y = 1|x = (0, 0)) = 0.8, p(y = 1|x = (0, 1)) = 0.6,
p(y = 1|x = (1, 0)) = 04, and p(y = 1|x = (1, 1)) = 0.2.

Figure 4 shows the multivariate information curve for this example, and the information
that the hidden representation maintains about the input X and the desired output (or ground
truth) Y . It is easy to verify that in this case I(X,H) = I(X;H1) + I(X;H2). Figure 5 gives
a more detailed view of the evolution of the hidden representation as a function of �.

These result demonstrate a water filling phenomenon for the hidden units of the networks,
analogous to the water-filling phenomena in rate–distortion theory [23]. When � < �1, both
hidden units are independent of the input (Figure 5A), and do not maintain any information
about X or Y (Figure 4C-D). The prediction of the network (Figure 5B) in this regime is based
on the prior p(y), which is uniform in this case. This means that the canonical hidden represen-
tation is constant, and thus both hidden units are redundant. When �1 < � < �2, only H1 keeps



information about the input and output. In this case H2 is redundant and can be eliminated from
the network. When � > �2, both units are informative, and their contribution is complemen-
tary. Namely, H1 evolves to represent X1 and H2 evolves to represent X2. Therefore, in this
regime both units are necessary for the optimal architecture uses both of them.

5 Conclusions

In this work, we have cast the notion of efficient compressed representations in terms of IB,
and characterized how these efficient representations evolve via a deterministic annealing pro-
cess. The main contributions of this work are: (1) introduction of order parameters that capture
the evolution of the IB representations and the structural phase transitions that they undergo;
(2) derivation of an algorithm for finding critical points; and (3) numerical exploration of the
phase transitions and related phenomena that occur in IB. Important directions for future re-
search include an extension of our analysis to continuous variables; characterization of the
critical slowing-down phenomenon in IB, and possibly methods for overcoming the computa-
tional problem this phenomenon raises. In addition, while the examples we considered here
are merely illustrative, they demonstrate general principles that may apply to several fields. For
example, some of these methods have already been applied to language evolution [12] and deep
neural networks [2, 4]. This work lays out some of the theoretical grounds for extending these
applications, as well as applying this approach more broadly.
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Appendix

In this section we prove several technical lemmas that were used in our main analysis.

Lemma 1. Let Y � X � X̂ be a Markov chain such that p(y, x, x̂) = p(x, y)p(x̂|x), and let

p(y|x̂) be the corresponding conditional distribution of Y given X̂ . Then

E
x,x̂

[D[p(y|x)kp(y|x̂)]] = I(X;Y )� I(X̂;Y ) .

Proof.

E
x,x̂

[D[p(y|x)kp(y|x̂)]] =
X

x,x̂

p(x)p(x̂|x) [D[p(y|x)kp(y|x̂)]]

=
X

x,x̂,y

p(x)p(x̂|x) log
p(y|x)p(y)

p(y|x̂)p(y)

=
X

x,x̂,y

p(x)p(x̂|x) log
p(y|x)

p(y)
�

X

x,x̂,y

p(x)p(x̂|x) log
p(y|x̂)

p(y)

= I(X;Y )� I(X̂;Y ) .

Lemma 2.
@
@� Ex [logZ�(x)] = I�(X̂;Y )� I(X;Y ).

Proof.

@

@�
E
x
[logZ�(x)] =

X

x

p(x)
@

@�
logZ�(x)

=
X

x

p(x)
1

Z�(x)

@

@�

 
X

x̂

p�(x̂)e
��D[p(y|x)kp�(y|x̂)]

!

=
X

x,x̂

p(x)
p�(x̂)e��D[p(y|x)kp�(y|x̂)]

Z�(x)

✓
@

@�
log p�(x̂)� �

@

@�
D[p(y|x)kp�(y|x̂)]

◆

�
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x,x̂

p(x)
p�(x̂)e��D[p(y|x)kp�(y|x̂)]

D[p(y|x)kp�(y|x̂)]

=
X

x,x̂

p(x)p�(x̂|x)

✓
@
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log p�(x̂)� �

@

@�
D[p(y|x)kp�(y|x̂)]

◆

�

X

x,x̂

p(x)p�(x̂|x)D[p(y|x)kp�(y|x̂)] .

The first term is zero (assuming p�(x̂) is differentiable w.r.t. �) because

E
x,x̂


@

@�
log p�(x̂)

�
=
X

x̂

p�(x̂)
@

@�
log p�(x̂) =

X

x̂

@

@�
p�(x̂) = 0 ,



and so is the second term, for similar reasons:

E
x,x̂


@

@�
D[p(y|x)kp�(y|x̂)]

�
= �

X

x,x̂,y

p(x)p�(x̂|x)p(y|x)
@
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log p�(y|x̂) = 0 .

It follows that
@

@�
E
x
[logZ�(x)] = � E

x,x̂
[D[p(y|x)kp�(y|x̂)]] ,

and applying Lemma 1 to the right hand side of this equation concludes the proof.

Lemma 3. Let p� be a canonical IB representation and x̂ 2 Supp(p�), then

I
�
X(x̂) = �I

�
Y (x̂)�

X

x

p�(x|x̂) [logZ�(x) + �IY (x)] , (16)

where IY (x) = D[p(y|x)kp(y)].

Proof. This follows from substituting (2) in the definition of I�X(x̂), i.e.
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Lemma 4. Let p� be a canonical IB representation and x̂ 2 Supp(p�), then
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and Ex̂ [g�(x̂)] = 0.



Proof. The first part follows from differentiating (16) with respect to �. For the second part,
notice that Proposition 2 implies that
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and therefore Ex̂ [g�(x̂)] = 0.


